cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029783 Exclusionary squares: numbers n such that no digit of n is present in n^2.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 17, 18, 22, 24, 29, 33, 34, 38, 39, 44, 47, 53, 54, 57, 58, 59, 62, 67, 72, 77, 79, 84, 88, 92, 94, 144, 157, 158, 173, 187, 188, 192, 194, 209, 212, 224, 237, 238, 244, 247, 253, 257, 259, 307, 313, 314, 333, 334, 338, 349, 353, 359
Offset: 1

Views

Author

Keywords

Comments

Complement of A189056; A076493(a(n)) = 0. - Reinhard Zumkeller, Apr 16 2011
A258682(a(n)) = a(n)^2. - Reinhard Zumkeller, Jun 07 2015
a(78) = 567 and a(112) = 854 are the only two numbers k such that the equation k^2 = m uses only once each of the digits 1 to 9 (reference David Wells). Exactly: 567^2 = 321489, and, 854^2 = 729316 (see A059930). - Bernard Schott, Jan 28 2021

Examples

			From _M. F. Hasler_, Oct 16 2018: (Start)
It is easy to construct infinite subsequences of the form S(a,b)(n) = a*R(n) + b, where R(n) = (10^n-1)/9 is the repunit of length n. Among these are:
S(3,0) = (3, 33, 333, ...), S(3,1) = (4, 34, 334, 3334, ...), S(3,5) = (8, 38, 338, ...), also b = 26, 44, 434, ... (with a = 3); S(6,1) = (7, 67, 667, ...), S(6,6) = (72, 672, 6672, ...) (excluding n=1), S(6,7) = (673, 6673, ...) (excluding also n=2 here), S(6,-7) = (59, 659, 6659, ...), and others. (End)
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

Cf. A059930 (n and n^2 use different digits), A112736 (numbers whose squares are exclusionary).

Programs

  • Haskell
    a029783 n = a029783_list !! (n-1)
    a029783_list = filter (\x -> a258682 x == x ^ 2) [1..]
    -- Reinhard Zumkeller, Jun 07 2015, Apr 16 2011
    
  • Mathematica
    Select[Range[1000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} &] (* Tanya Khovanova, Dec 25 2006 *)
  • PARI
    is_A029783(n)=!#setintersect(Set(digits(n)),Set(digits(n^2))) \\ M. F. Hasler, Oct 16 2018
    
  • Python
    # see linked program
    
  • Python
    from itertools import count, islice
    def A029783_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not set(str(n))&set(str(n**2)),count(max(startvalue,0)))
    A029783_list = list(islice(A029783_gen(),30)) # Chai Wah Wu, Feb 12 2023

Extensions

Definition slightly reworded at the suggestion of Franklin T. Adams-Watters by M. F. Hasler, Oct 16 2018

A189056 Numbers having in decimal representation at least one common digit with their squares.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 55, 56, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 16 2011

Keywords

Comments

Complement of A029783; A076493(a(n)) > 0.
A258682(a(n)) < a(n)^2. - Reinhard Zumkeller, Jun 07 2015

Crossrefs

Programs

  • Haskell
    a189056 n = a189056_list !! (n-1)
    a189056_list = 0 : filter (\x -> a258682 x /= x ^ 2) [1..]
    -- Reinhard Zumkeller, Jun 07 2015, Apr 16 2011
    
  • Mathematica
    Select[Range[0,120],Length[Intersection[IntegerDigits[#], IntegerDigits[ #^2]]]>0&] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    isok(n) = (n==0) || #setintersect(Set(digits(n)), Set(digits(n^2))); \\ Michel Marcus, Jun 13 2015

A387070 Remove every digit that appears in n from the decimal representation of n^2. If no digits remain, set a(n) = 0.

Original entry on oeis.org

0, 0, 4, 9, 16, 2, 3, 49, 64, 81, 0, 2, 44, 69, 96, 22, 25, 289, 324, 36, 4, 44, 484, 59, 576, 6, 7, 9, 74, 841, 9, 96, 104, 1089, 1156, 122, 129, 169, 1444, 1521, 16, 68, 176, 189, 1936, 202, 211, 2209, 230, 201, 2, 260, 704, 2809, 2916, 302, 313, 3249, 3364, 3481, 3, 372, 3844, 99, 9, 422, 435
Offset: 0

Views

Author

Ali Sada, Aug 15 2025

Keywords

Examples

			a(25) = 6 since 25^2 = 625 and once we remove the 2 and 5, we are left with 6.
a(26) = 7 since 26^2 = 676 and once we remove the 6, we are left with 7.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Select[IntegerDigits[n^2], FreeQ[IntegerDigits[n], #] &]]; Array[a, 100, 0] (* Amiram Eldar, Aug 16 2025 *)
  • PARI
    a(n)={my(S=Set(digits(n))); fromdigits(select(x->!setsearch(S,x), digits(n^2)))} \\ Andrew Howroyd, Aug 15 2025
    
  • Python
    def A387070(k):
        s = set(str(k))
        t = "".join(d for d in str(k**2) if d not in s)
        return int(t) if t != "" else 0
    print([A387070(n) for n in range(67)]) # Michael S. Branicky, Aug 16 2025

Formula

a(n) = A258682(n) for n <= 19.
From David A. Corneth, Aug 16 2025: (Start)
a(A029793(k)) = 0.
a(A029783(k)) = A029783(k)^2. (End)
Showing 1-3 of 3 results.