cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A360301 Smallest exclusionary square (A029783) with exactly n distinct prime factors.

Original entry on oeis.org

2, 18, 84, 858, 31122, 3383898, 188841114, 68588585868, 440400004044, 7722272777722272
Offset: 1

Views

Author

Bernard Schott, Feb 02 2023

Keywords

Comments

There is no 5 in the prime factorization of these terms.
No other terms less than 10^14. - Michael S. Branicky, Feb 02 2023
1.69 * 10^15 < a(10) <= 7722272777722272. - Daniel Suteu, Feb 05 2023

Examples

			84 = 2^2 * 3 * 7 is the smallest integer with 3 distinct prime factors that is also an exclusionary square, because 84^2 = 7056, so a(3) = 84.
858 = 2 * 3 * 11 * 13 is the smallest integer with 4 distinct prime factors that is also an exclusionary square, because 858^2 = 736164, so a(4) = 858.
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

Cf. A029783.
Similar: A060319 (Fibonacci), A083002 (oblong), A359960 (Niven), A359961 (Zuckerman).

Programs

  • PARI
    omega_exclusionary_squares(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), if(q == 5, next); my(v=m*q); while(v <= B, if(j==1, if(v>=A && #setintersect(Set(digits(v)), Set(digits(v^2))) == 0, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
    a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_exclusionary_squares(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 05 2023

Formula

Assuming a(n) exists, a(n) >= A002110(n+1)/5 >> exp((1 + o(1)) * n * log(n)). (The inequality is presumably strict for all n; for n > 34 it seems that all A002110(n) are pandigital.) - Charles R Greathouse IV, Feb 05 2023

Extensions

a(4)-a(7) from Amiram Eldar, Feb 02 2023
a(8)-a(9) from Michael S. Branicky, Feb 02 2023
a(10) from Michael S. Branicky, Feb 07 2023

A111116 Numbers n such that digits of n are not present in n^4.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 24, 27, 28, 32, 33, 42, 52, 53, 58, 59, 67, 77, 88, 89, 93, 202, 203, 258, 284, 303, 324, 329, 377, 383, 422, 669, 818, 832, 843, 878, 882, 887, 949, 2027, 2042, 2673, 3144, 3222, 3253, 3302, 3308, 3737, 3773, 3953, 3979, 3983, 4779, 5353, 5669
Offset: 1

Views

Author

Lekraj Beedassy, Oct 15 2005

Keywords

Comments

The number of k-digit numbers for which this occurs is: 6,15,18,32,21,14,20,...

Crossrefs

For the corresponding n^4, see A113316.

Programs

  • Mathematica
    Select[Range[6000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^4]] == {} &] (* Ray Chandler, Oct 17 2005 *)
    fQ[n_] := Intersection[ Union[ IntegerDigits[n]], Union[ IntegerDigits[n^4]]] == {}; Select[ Range[ 5887], fQ[ # ] &] (* Robert G. Wilson v *)
  • Python
    A111116_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**4)) == set()]
    # Chai Wah Wu, Jan 05 2015

Extensions

Corrected and extended by Robert G. Wilson v and Ray Chandler, Oct 17 2005

A029785 Numbers k whose cube k^3 has no digit in common with k.

Original entry on oeis.org

2, 3, 7, 8, 22, 27, 43, 47, 48, 52, 53, 63, 68, 77, 92, 157, 172, 177, 187, 188, 192, 222, 223, 252, 263, 303, 378, 408, 423, 442, 458, 468, 477, 478, 487, 527, 552, 558, 577, 587, 588, 608, 648, 692, 707, 772, 808, 818, 823, 843, 888, 918, 922
Offset: 1

Views

Author

Keywords

Comments

Original name: Digits of n are not present in n^3.
Might be called "Exclusionary Cubes", although this might be reserved for terms having no duplicate digits, cf. link to rec.puzzles discussion group. In that case the largest term would be 7658 = A113951(3). - M. F. Hasler, Oct 17 2018; corrected thanks to David Radcliffe and Michel Marcus, Apr 30 2020

Examples

			k = 80800000008880080808880080088 is in the sequence because the 87-digit number k^3 has only digits 1, ..., 7 and 9. - _M. F. Hasler_, Oct 16 2018
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Intersection[IntegerDigits[#], IntegerDigits[#^3]]=={}&] (* Vincenzo Librandi, Oct 04 2013 *)
  • PARI
    is(n)=my(d=Set(digits(n))); setminus(d,Set(digits(n^3)))==d \\ Charles R Greathouse IV, Oct 02 2013
    
  • PARI
    is_A029785(n)=setintersect(Set(digits(n)),Set(digits(n^3)))==[] \\ M. F. Hasler, Oct 16 2018

Extensions

Name reworded by Jon E. Schoenfield and M. F. Hasler, Oct 16 2018

A076493 Number of common (distinct) decimal digits of n and n^2.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Labos Elemer, Oct 21 2002

Keywords

Comments

a(A029783(n)) = 0, a(A189056(n)) > 0; 0 <= a(n) <= 10, see example for first occurrences. [Reinhard Zumkeller, Apr 16 2011]

Examples

			a(2) = #{} = 0: 2^2 = 4;
a(0) = #{0} = 1: 0^2 = 0;
a(10) = #{0,1} = 2: 10^2 = 100;
a(105) = #{0,1,5} = 3: 105^2 = 11025;
a(1025) = #{0,1,2,5} = 4: 1025^2 = 1050625;
a(10245) = #{0,1,2,4,5} = 5: 10245^2 = 104960025;
a(102384) = #{0,1,2,3,4,8} = 6: 102384^2 = 10482483456;
a(1023456789) = #{0 .. 9} = 10: 1023456789^2 = 1047463798950190521.
		

Crossrefs

Programs

  • Haskell
    import Data.List (intersect, nub)
    import Data.Function (on)
    a076493 n = length $ (intersect `on` nub . show) n (n^2)
    -- Reinhard Zumkeller, Apr 16 2011
  • Mathematica
    Table[Length[Intersection[IntegerDigits[n], IntegerDigits[n^2]]], {n, 1, 100}]

Extensions

Initial 1 added and offset adjusted by Reinhard Zumkeller, Apr 16 2011

A189056 Numbers having in decimal representation at least one common digit with their squares.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 55, 56, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 16 2011

Keywords

Comments

Complement of A029783; A076493(a(n)) > 0.
A258682(a(n)) < a(n)^2. - Reinhard Zumkeller, Jun 07 2015

Crossrefs

Programs

  • Haskell
    a189056 n = a189056_list !! (n-1)
    a189056_list = 0 : filter (\x -> a258682 x /= x ^ 2) [1..]
    -- Reinhard Zumkeller, Jun 07 2015, Apr 16 2011
    
  • Mathematica
    Select[Range[0,120],Length[Intersection[IntegerDigits[#], IntegerDigits[ #^2]]]>0&] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    isok(n) = (n==0) || #setintersect(Set(digits(n)), Set(digits(n^2))); \\ Michel Marcus, Jun 13 2015

A113316 Fourth powers m^4 none of whose digits are present in their corresponding roots m.

Original entry on oeis.org

16, 81, 256, 2401, 4096, 6561, 331776, 531441, 614656, 1048576, 1185921, 3111696, 7311616, 7890481, 11316496, 12117361, 20151121, 35153041, 59969536, 62742241, 74805201, 1664966416, 1698181681, 4430766096, 6505390336, 8428892481
Offset: 1

Views

Author

Lekraj Beedassy, Oct 26 2005

Keywords

Comments

For the associated root m, see A111116.

Crossrefs

Programs

  • Mathematica
    Select[Range[350]^4,Intersection[IntegerDigits[#], IntegerDigits[ Surd[ #,4]]] =={}&] (* Harvey P. Dale, Dec 19 2015 *)

A029784 Squares such that digits of sqrt(n) are not present in n.

Original entry on oeis.org

4, 9, 16, 49, 64, 81, 289, 324, 484, 576, 841, 1089, 1156, 1444, 1521, 1936, 2209, 2809, 2916, 3249, 3364, 3481, 3844, 4489, 5184, 5929, 6241, 7056, 7744, 8464, 8836, 20736, 24649, 24964, 29929, 34969, 35344, 36864, 37636, 43681, 44944, 50176, 56169, 56644
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[500], {} == Intersection @@ IntegerDigits[{#, #^2}] &]^2 (* Giovanni Resta, Aug 08 2018 *)

Formula

a(n) = A029783(n)^2. - Michel Marcus, Aug 08 2018

Extensions

More terms from Giovanni Resta, Aug 08 2018

A112736 Numbers whose square is exclusionary.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 17, 18, 24, 29, 34, 38, 39, 47, 53, 54, 57, 58, 59, 62, 67, 72, 79, 84, 92, 94, 157, 158, 173, 187, 192, 194, 209, 237, 238, 247, 253, 257, 259, 307, 314, 349, 359, 409, 437, 459, 467, 547, 567, 612, 638, 659, 672, 673, 689, 712, 729, 738, 739, 749
Offset: 1

Views

Author

Lekraj Beedassy, Sep 16 2005

Keywords

Comments

The number m with no repeated digits has an exclusionary square m^2 if the latter is made up of digits not appearing in m. For the corresponding exclusionary squares see A112735.
a(49) = 567 and a(68) = 854 are the only two numbers k such that the equation k^2 = m uses only once each of the digits 1 to 9 (reference David Wells). Exactly: 567^2 = 321489, and, 854^2 = 729316. - Bernard Schott, Dec 20 2021

Examples

			409^2 = 167281 and the square 167281 is made up of digits not appearing in 409, hence 409 is a term.
		

References

  • H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, Vol. 32 No.4 2003-4 Baywood NY.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

This is a subsequence of A029783 (Digits of n are not present in n^2) of numbers with all different digits. The sequence A059930 (Numbers n such that n and n^2 combined use different digits) is a subsequence of this sequence.

Programs

  • Mathematica
    Select[Range[1000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} && Length[Union[IntegerDigits[ # ]]] == Length[IntegerDigits[ # ]] &] (* Tanya Khovanova, Dec 25 2006 *)

Extensions

More terms from Tanya Khovanova, Dec 25 2006

A029786 Cubes such that digits of cube root of n are not present in n.

Original entry on oeis.org

8, 27, 343, 512, 10648, 19683, 79507, 103823, 110592, 140608, 148877, 250047, 314432, 456533, 778688, 3869893, 5088448, 5545233, 6539203, 6644672, 7077888, 10941048, 11089567, 16003008, 18191447, 27818127, 54010152, 67917312, 75686967, 86350888, 96071912
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], {} == Intersection @@ IntegerDigits[{#, #^3}] &]^3 (* Giovanni Resta, Aug 08 2018 *)

Extensions

More terms from Giovanni Resta, Aug 08 2018

A059930 Numbers n such that n and n^2 combined use different digits.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 17, 18, 24, 29, 53, 54, 57, 59, 72, 79, 84, 209, 259, 567, 807, 854
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2001

Keywords

Comments

There are exactly 22 solutions in base 10.
More precisely: the concatenation of n and n^2 does not contain any digit twice. - M. F. Hasler, Oct 16 2018
a(20) = 567 and a(22) = 854 are the only two numbers k such that k and k^2 combined use each of the digits 1 to 9 exactly once (reference David Wells): 567^2 = 321489 and 854^2 = 729316. - Bernard Schott, Mar 23 2021

References

  • M. Kraitchik, Mathematical Recreations, p. 48, Problem 12. - From N. J. A. Sloane, Mar 15 2013
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

Cf. A059931, A029783 (digits of n are not present in n^2), A112736 (numbers whose squares are exclusionary).

Programs

  • Maple
    M:=1000;
    a1:=[]; a2:=[];
    for n from 1 to M do
    # are digits of n and n^2 distinct?
    t1:=convert(n,base,10);
    t2:=convert(n^2,base,10);
    s3:={op(t1),op(t2)};
    if nops(t1)+nops(t2) = nops(s3) then a1:=[op(a1),n]; a2:=[op(a2),n^2]; fi;
    od:
    a1; a2;
    # N. J. A. Sloane, Mar 15 2013
  • Mathematica
    Select[Range[10000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} && Length[Union[IntegerDigits[ # ], IntegerDigits[ #^2]]] == Length[IntegerDigits[ # ]] + Length[IntegerDigits[ #^2]] &] (* Tanya Khovanova, Dec 25 2006 *)
    Select[Range[10^3], Union@ Tally[Flatten@ IntegerDigits@ {#, #^2}][[All, -1]] == {1} &] (* Michael De Vlieger, Oct 17 2018 *)
  • PARI
    select( is(n)=#Set(Vecsmall(n=Str(n,n^2)))==#n, [1..999]) \\ M. F. Hasler, Oct 16 2018
Showing 1-10 of 19 results. Next