cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A029783 Exclusionary squares: numbers n such that no digit of n is present in n^2.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 17, 18, 22, 24, 29, 33, 34, 38, 39, 44, 47, 53, 54, 57, 58, 59, 62, 67, 72, 77, 79, 84, 88, 92, 94, 144, 157, 158, 173, 187, 188, 192, 194, 209, 212, 224, 237, 238, 244, 247, 253, 257, 259, 307, 313, 314, 333, 334, 338, 349, 353, 359
Offset: 1

Views

Author

Keywords

Comments

Complement of A189056; A076493(a(n)) = 0. - Reinhard Zumkeller, Apr 16 2011
A258682(a(n)) = a(n)^2. - Reinhard Zumkeller, Jun 07 2015
a(78) = 567 and a(112) = 854 are the only two numbers k such that the equation k^2 = m uses only once each of the digits 1 to 9 (reference David Wells). Exactly: 567^2 = 321489, and, 854^2 = 729316 (see A059930). - Bernard Schott, Jan 28 2021

Examples

			From _M. F. Hasler_, Oct 16 2018: (Start)
It is easy to construct infinite subsequences of the form S(a,b)(n) = a*R(n) + b, where R(n) = (10^n-1)/9 is the repunit of length n. Among these are:
S(3,0) = (3, 33, 333, ...), S(3,1) = (4, 34, 334, 3334, ...), S(3,5) = (8, 38, 338, ...), also b = 26, 44, 434, ... (with a = 3); S(6,1) = (7, 67, 667, ...), S(6,6) = (72, 672, 6672, ...) (excluding n=1), S(6,7) = (673, 6673, ...) (excluding also n=2 here), S(6,-7) = (59, 659, 6659, ...), and others. (End)
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

Cf. A059930 (n and n^2 use different digits), A112736 (numbers whose squares are exclusionary).

Programs

  • Haskell
    a029783 n = a029783_list !! (n-1)
    a029783_list = filter (\x -> a258682 x == x ^ 2) [1..]
    -- Reinhard Zumkeller, Jun 07 2015, Apr 16 2011
    
  • Mathematica
    Select[Range[1000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} &] (* Tanya Khovanova, Dec 25 2006 *)
  • PARI
    is_A029783(n)=!#setintersect(Set(digits(n)),Set(digits(n^2))) \\ M. F. Hasler, Oct 16 2018
    
  • Python
    # see linked program
    
  • Python
    from itertools import count, islice
    def A029783_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not set(str(n))&set(str(n**2)),count(max(startvalue,0)))
    A029783_list = list(islice(A029783_gen(),30)) # Chai Wah Wu, Feb 12 2023

Extensions

Definition slightly reworded at the suggestion of Franklin T. Adams-Watters by M. F. Hasler, Oct 16 2018

A111116 Numbers n such that digits of n are not present in n^4.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 24, 27, 28, 32, 33, 42, 52, 53, 58, 59, 67, 77, 88, 89, 93, 202, 203, 258, 284, 303, 324, 329, 377, 383, 422, 669, 818, 832, 843, 878, 882, 887, 949, 2027, 2042, 2673, 3144, 3222, 3253, 3302, 3308, 3737, 3773, 3953, 3979, 3983, 4779, 5353, 5669
Offset: 1

Views

Author

Lekraj Beedassy, Oct 15 2005

Keywords

Comments

The number of k-digit numbers for which this occurs is: 6,15,18,32,21,14,20,...

Crossrefs

For the corresponding n^4, see A113316.

Programs

  • Mathematica
    Select[Range[6000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^4]] == {} &] (* Ray Chandler, Oct 17 2005 *)
    fQ[n_] := Intersection[ Union[ IntegerDigits[n]], Union[ IntegerDigits[n^4]]] == {}; Select[ Range[ 5887], fQ[ # ] &] (* Robert G. Wilson v *)
  • Python
    A111116_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**4)) == set()]
    # Chai Wah Wu, Jan 05 2015

Extensions

Corrected and extended by Robert G. Wilson v and Ray Chandler, Oct 17 2005

A029785 Numbers k whose cube k^3 has no digit in common with k.

Original entry on oeis.org

2, 3, 7, 8, 22, 27, 43, 47, 48, 52, 53, 63, 68, 77, 92, 157, 172, 177, 187, 188, 192, 222, 223, 252, 263, 303, 378, 408, 423, 442, 458, 468, 477, 478, 487, 527, 552, 558, 577, 587, 588, 608, 648, 692, 707, 772, 808, 818, 823, 843, 888, 918, 922
Offset: 1

Views

Author

Keywords

Comments

Original name: Digits of n are not present in n^3.
Might be called "Exclusionary Cubes", although this might be reserved for terms having no duplicate digits, cf. link to rec.puzzles discussion group. In that case the largest term would be 7658 = A113951(3). - M. F. Hasler, Oct 17 2018; corrected thanks to David Radcliffe and Michel Marcus, Apr 30 2020

Examples

			k = 80800000008880080808880080088 is in the sequence because the 87-digit number k^3 has only digits 1, ..., 7 and 9. - _M. F. Hasler_, Oct 16 2018
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Intersection[IntegerDigits[#], IntegerDigits[#^3]]=={}&] (* Vincenzo Librandi, Oct 04 2013 *)
  • PARI
    is(n)=my(d=Set(digits(n))); setminus(d,Set(digits(n^3)))==d \\ Charles R Greathouse IV, Oct 02 2013
    
  • PARI
    is_A029785(n)=setintersect(Set(digits(n)),Set(digits(n^3)))==[] \\ M. F. Hasler, Oct 16 2018

Extensions

Name reworded by Jon E. Schoenfield and M. F. Hasler, Oct 16 2018

A029784 Squares such that digits of sqrt(n) are not present in n.

Original entry on oeis.org

4, 9, 16, 49, 64, 81, 289, 324, 484, 576, 841, 1089, 1156, 1444, 1521, 1936, 2209, 2809, 2916, 3249, 3364, 3481, 3844, 4489, 5184, 5929, 6241, 7056, 7744, 8464, 8836, 20736, 24649, 24964, 29929, 34969, 35344, 36864, 37636, 43681, 44944, 50176, 56169, 56644
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[500], {} == Intersection @@ IntegerDigits[{#, #^2}] &]^2 (* Giovanni Resta, Aug 08 2018 *)

Formula

a(n) = A029783(n)^2. - Michel Marcus, Aug 08 2018

Extensions

More terms from Giovanni Resta, Aug 08 2018

A029786 Cubes such that digits of cube root of n are not present in n.

Original entry on oeis.org

8, 27, 343, 512, 10648, 19683, 79507, 103823, 110592, 140608, 148877, 250047, 314432, 456533, 778688, 3869893, 5088448, 5545233, 6539203, 6644672, 7077888, 10941048, 11089567, 16003008, 18191447, 27818127, 54010152, 67917312, 75686967, 86350888, 96071912
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], {} == Intersection @@ IntegerDigits[{#, #^3}] &]^3 (* Giovanni Resta, Aug 08 2018 *)

Extensions

More terms from Giovanni Resta, Aug 08 2018

A113317 Exclusionary biquadrates (fourth powers).

Original entry on oeis.org

16, 81, 256, 2401, 4096, 6561, 331776, 531441, 614656, 1048576, 3111696, 7311616, 7890481, 11316496, 12117361, 21051121, 62742241, 74805201, 1698181681, 4430766096, 6505390336, 11019960576, 11716114081, 479174066176, 505022001201, 51050010415041
Offset: 1

Views

Author

Lekraj Beedassy, Oct 26 2005

Keywords

Comments

An exclusionary biquadrate m^4 is one sharing no digit in common with its root m made up of distinct digits.

Examples

			331776 = 24^4 is in the sequence as 331776 and 24 have no digits in common and 24 has distinct digits. - _David A. Corneth_, May 12 2025
		

References

  • Shyam Sunder Gupta, "Exploring the Beauty of Fascinating Numbers", Springer, pp. 43-44.
  • H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, vol. 32 No.4 2003-4 Baywood NY.

Crossrefs

Subsequence of A000583. Subsequence of A113316.
Roots are given by A113318.

Formula

a(n) = A113318(n)^4.

Extensions

Corrected by Don Reble, Nov 22 2006
a(25)-a(26) added by Patrick De Geest, May 12 2025
Showing 1-6 of 6 results.