cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).

Original entry on oeis.org

1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
a(n) is a solution to the Pell equation (4*a(n))^2 - 15*b(n)^2 = 1. The corresponding b(n) are A258684(n). - Klaus Purath, Jul 19 2025

Crossrefs

Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).

Programs

  • Mathematica
    LinearRecurrence[{62, -1}, {1, 61}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025

A041105 Denominators of continued fraction convergents to sqrt(60).

Original entry on oeis.org

1, 1, 3, 4, 59, 63, 185, 248, 3657, 3905, 11467, 15372, 226675, 242047, 710769, 952816, 14050193, 15003009, 44056211, 59059220, 870885291, 929944511, 2730774313, 3660718824, 53980837849, 57641556673, 169263951195, 226905507868, 3345941061347, 3572846569215
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 4 linear recurrences with constant coefficients. - Gerry Martens, Jun 10 2015

Crossrefs

Programs

  • Magma
    I:=[1, 1, 3, 4, 59, 63, 185, 248]; [n le 8 select I[n] else 62*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Maple
    numtheory:-cfrac(sqrt(60),100,'con','den'):
    den[1..-2]; # Robert Israel, Jun 09 2015
  • Mathematica
    Denominator[Convergents[Sqrt[60], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    d0 := LinearRecurrence[{62, -1}, {1, 59}, 20]
    d1 := LinearRecurrence[{62, -1}, {1, 63}, 20] (* A258684  *)
    d2 := LinearRecurrence[{62, -1}, {3, 185}, 20]
    d3 := LinearRecurrence[{62, -1}, {4, 248}, 20]
    Flatten[MapIndexed[{d0[[#]] , d1[[#]], d2[[#]] , d3[[#]]} &,
      Range[10]]] (* Gerry Martens, Jun 09 2015 *)
    LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{1, 1, 3, 4, 59, 63, 185, 248},30] (* Ray Chandler, Aug 03 2015 *)

Formula

G.f.: -(x^2-x-1)*(x^4+4*x^2+1) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - Colin Barker, Nov 12 2013
a(n) = 62*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 12 2013
Showing 1-2 of 2 results.