cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684
Offset: 0

Views

Author

Keywords

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A027851(n) + A029851(n))/2.

Extensions

a(9) added by Andreas Distler, Jan 12 2011
a(10) from Distler et al. 2012, added by Andrey Zabolotskiy, Nov 08 2018

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A001425 Number of commutative groupoids with n elements.

Original entry on oeis.org

1, 1, 4, 129, 43968, 254429900, 30468670170912, 91267244789189735259, 8048575431238519331999571800, 24051927835861852500932966021650993560, 2755731922430783367615449408031031255131879354330
Offset: 0

Views

Author

Keywords

References

  • Satoh, S.; Yama, K.; and Tokizawa, M., Semigroups of order 8, Semigroup Forum 49 (1994), 7-29. [Background]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.

Crossrefs

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (sum {d|i} (d*s_d))^(i*s_i^2/2) * (sum {d|i/2} (d*s_d))^s_i or {i != j} (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)
a(n) asymptotic to (n^binomial(n+1, 2))/n! = A023813(n)/A000142(n) ~ e^n*n^binomial(n, 2) / sqrt(2*pi*n).

Extensions

More terms from Christian G. Bower Feb 15 1998 and May 15 1998. Formula Dec 03 2003.

A001428 Number of inverse semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 2, 5, 16, 52, 208, 911, 4637, 26422, 169163, 1198651, 9324047, 78860687, 719606005, 7035514642
Offset: 1

Views

Author

Keywords

References

  • S. Satoh, K. Yama, and M. Tokizawa, Semigroups of order 8, Semigroup Forum 49 (1994), 7-29.
  • H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, Semigroup Forum, 14 (1977), 69-79.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific, 1998. [From Jonathan Vos Post, Mar 08 2010]
  • G. B. Preston, "Inverse semi-groups". Journal of the London Mathematical Society 29: 396-403. [From Jonathan Vos Post, Mar 08 2010]
  • V. V. Wagner (1952). "Generalised groups". Proceedings of the USSR Academy of Sciences 84: 1119-1122. (Russian) English translation. [From Jonathan Vos Post, Mar 08 2010]

Crossrefs

Cf. A234843 (commutative inverse semigroups), A234844 (inverse monoids), A234845 (commutative inverse monoids).

Extensions

a(8) and a(9) from Andreas Distler, Jan 17 2011
Added more terms (from the Malandro reference), Joerg Arndt, Dec 30 2013

A258719 Number of self-dual noncommutative groupoids with n elements.

Original entry on oeis.org

0, 0, 9, 16192, 198862625, 42002510818752, 207278622607612079818, 29215384735442091573649485568, 137562588659577384442574662095693261747, 24724406349174154904254665510689036571978910174560
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Formula

a(n) = A029850(n) - A001425(n). - Andrew Howroyd, May 06 2023

Extensions

a(5)-a(10) from Andrew Howroyd, May 06 2023

A001424 Number of nonisomorphic and nonantiisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 7, 1734, 89521056, 1241763995193675, 7162795001695681351632672, 25488450150907292192918677242007992558, 77841043345568973636021269757801814299054870565039692
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.

Crossrefs

Formula

a(n) = (A001329(n) + A029850(n))/2

Extensions

Better description and corrected 4th term from Christian G. Bower, Jan 15 1998. More terms, Jun 15 1998.

A001427 Number of regular semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 3, 9, 42, 206, 1352, 10168, 91073, 925044
Offset: 1

Views

Author

Keywords

References

  • Tak-Shing T. Chan, YH Yang, Polar n-Complex and n-Bicomplex Singular Value Decomposition and Principal Component Pursuit, IEEE Transactions on Signal Processing ( Volume: 64, Issue: 24, Dec.15, 15 2016 ); DOI: 10.1109/TSP.2016.2612171
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

a(8) and a(9) from Andreas Distler, Jan 17 2011
Showing 1-8 of 8 results.