cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A259303 Numbers n such that there exists an x!=n that makes {x,x,n} an amicable multiset.

Original entry on oeis.org

1560, 7380, 20448, 20664, 22752, 23352, 25248, 26964, 35328, 51360, 100200, 104412, 108792, 135540, 156312, 192096, 232740, 252252, 278460, 310752, 362160, 401688, 492660, 543456, 548592, 588744, 659736, 732060, 767520, 826848, 998712, 999648, 1129440, 1129464
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

We call the multiset {x,x,n} amicable iff sigma(x)=sigma(n)=x+x+n.
For the x values, see A259302.
If the condition x!=n were dropped, the terms from A005820 would also belong here.

Crossrefs

Programs

  • PARI
    isOK(n) = x=(sigma(n)-n)/2; x>0 && x!=n && denominator(x)==1 && sigma(x)==x+x+n;

A259304 Numbers n such that there exists an x!=n that makes {n,n,n,x} an amicable multiset.

Original entry on oeis.org

796320, 1205820, 1277640, 1963080, 5154240, 8599500, 8694000, 9022860, 10820880, 12149280, 15845760, 17173800, 18023040, 19323360, 21360240, 22720320, 25494480, 27052200, 27335880, 28365480, 28574280, 28704060, 29211000, 30329640, 30373200, 30450420, 31433220
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

We call the multiset {n,n,n,x} amicable iff sigma(n)=sigma(x)=n+n+n+x.
For the x values, see A259305.
If the condition x!=n were dropped, the terms from A027687 would also belong here.

Crossrefs

Programs

  • PARI
    isOK(n) = x=sigma(n)-3*n; x>0&x!=n&sigma(x)==3*n+x

A259305 Numbers n such that there exists an x!=n that makes {x,x,x,n} an amicable multiset.

Original entry on oeis.org

756000, 1220940, 1437480, 1973160, 5019840, 9058140, 9703260, 11058480, 11641680, 13085280, 17089920, 18117000, 19370880, 21282912, 21628080, 25295760, 25585560, 26936640, 27763560, 28191240, 29104200, 29203020, 30450420, 32839560, 33279120, 33398820
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

We call the multiset {x,x,x,n} amicable iff sigma(x)=sigma(n)=x+x+x+n.
For the x values, see A259304.
If the condition x!=n were dropped, the terms from A027687 would also belong here.

Crossrefs

Programs

  • PARI
    isOK(n) = x=(sigma(n)-n)/3; x>0&x!=n&denominator(x)==1&sigma(x)==3*x+n

A259306 Numbers n such that there exists an x!=n that makes {n,n,x,x} an amicable multiset.

Original entry on oeis.org

1441440, 1860768, 3205440, 3378240, 3423420, 3914820, 4029480, 4437720, 5738040, 6093360, 6807240, 7136640, 7239120, 7551360, 9402120, 10204740, 12270720, 12405120, 12942720, 13495680, 14627340, 14725620, 15233400, 17166240, 18097800, 19158048, 23023440
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

We call the multiset {n,n,x,x} amicable iff sigma(n)=sigma(x)=n+n+x+x.
If the condition x!=n were dropped, the terms from A027687 would also belong here.

Crossrefs

Programs

  • PARI
    isOK(n) = x=(sigma(n)-2*n)/2; x>0 && x!=n && denominator(x)==1 && sigma(x)==n+n+x+x

A259307 Numbers that belong to at least one amicable multiset.

Original entry on oeis.org

1, 6, 28, 120, 220, 284, 496, 672, 1184, 1210, 1560, 1740, 1980, 2016, 2556, 2620, 2924, 5020, 5564, 6232, 6368, 7380, 7776, 8128, 9180, 9504, 10744, 10856, 11556, 12285, 14595, 17296, 18416, 19260, 20448, 20640, 20664, 21168, 21384, 21924, 22200, 22428, 22752
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

Call a finite multiset {x_1, x_2, ..., x_k} of natural numbers (the x_i need not be distinct) an amicable multiset iff sigma(x_1)=sigma(x_2)=...=sigma(x_k)=x_1+x_2+...+x_k.
By definition, A255215 is a subset because a set can be regarded as a special multiset.
Also A007691 is a subset, since a k-perfect number corresponds to an amicable multiset in an obvious way. For example, since 120 is 3-perfect, the multiset {120, 120, 120} is amicable.
The first amicable multiset that belongs to neither A255215 nor A007691 is {1740, 1740, 1560}.

Crossrefs

Programs

  • PARI
    /* write amicable multisets */ sMax=10^7;sigmaVals=vector(sMax,x,[]);for(n=1,sMax,s=sigma(n);s<=sMax&sigmaVals[s]=concat(sigmaVals[s],[n]));(MultisetSum(numbers,desiredSum,track)=if(desiredSum<0,return);if(desiredSum==0,print(apply(x->numbers[x],track));return);for(i=if(track,track[#track],1),#numbers,MultisetSum(numbers,desiredSum-numbers[i],concat(track,[i]))));for(s=1,sMax,MultisetSum(sigmaVals[s],s,[]))

A273969 Numbers n such that there exists a pair x,y, where x

Original entry on oeis.org

702240, 817740, 1156680, 1159200, 1811040, 2450448, 2570400, 2784600, 3534300, 3912480, 4228560, 4546080, 4702320, 5682600, 6902280, 7280280, 7469280, 7706160, 8225280, 8316000, 8465184, 8522640, 8639400, 9025380, 9256800, 9282000, 9492120, 9828000
Offset: 1

Views

Author

John Cerkan, Jul 17 2016

Keywords

Comments

We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the x values, see A273970. For the y values, see A273971.
If the condition xA259306 would also belong here.

Examples

			sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
		

Crossrefs

A273970 Numbers x such that there exist a pair y, n with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset.

Original entry on oeis.org

695520, 753480, 1113840, 1136520, 1784160, 2313360, 2898720, 3140280, 3865680, 3960600, 4272840, 4500720, 4626720, 6126120, 6167700, 7197960, 7442820, 7731360, 8177400, 8498700, 8784720, 8828820, 8920800, 8966160, 9124920, 9232860, 9664200, 9729720
Offset: 1

Views

Author

John Cerkan, Jul 17 2016

Keywords

Comments

We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the n values, see A273969. For the y values, see A273971.
If the condition xA259306 would also belong here.

Examples

			sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
		

Crossrefs

A273971 Numbers y such that there exists a pair x, n, with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset.

Original entry on oeis.org

756000, 803040, 1267560, 1442448, 1851360, 2535120, 3209760, 3477240, 3926160, 3969840, 4413240, 4664880, 6094368, 6840540, 7617960, 7783020, 8027880, 8360352, 8586900, 9215640, 9559200, 9596520, 9697380, 9811620, 9815400, 9938160, 10063200, 10234224
Offset: 1

Views

Author

John Cerkan, Jul 17 2016

Keywords

Comments

We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the n values, see A273969. For the x values, see A273970.
If the condition xA259306 would also belong here.

Examples

			sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
		

Crossrefs

Showing 1-9 of 9 results.