A266477
Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 2, 2, 0, 1, 5, 4, 2, 1, 1, 1, 1, 6, 6, 2, 3, 1, 2, 0, 2, 8, 7, 4, 4, 1, 2, 1, 0, 2, 1, 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2, 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1, 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0
Offset: 0
Row 4 is [2,2,0,1]. Indeed, the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 1, 1;
03 : 2, 0, 1;
04 : 2, 2, 0, 1;
05 : 3, 2, 1, 0, 1;
06 : 4, 2, 2, 2, 0, 1;
07 : 5, 4, 2, 1, 1, 1, 1;
08 : 6, 6, 2, 3, 1, 2, 0, 2;
09 : 8, 7, 4, 4, 1, 2, 1, 0, 2, 1;
10 : 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2;
11 : 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1;
12 : 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0, 2, 0, 0, 0, 2, 0, 1;
-
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
x^max(p, p*n), add(b(n-i*j, i-1, max(p, p*j)), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
seq(T(n), n=0..16);
-
Map[Table[Length@ Position[#, k], {k, Max@ #}] &, #] &@ Table[Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 12}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, x^Max[p, p*n], Sum[b[n - i*j, i - 1, Max[p, p*j]], {j, 0, n/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p,x]}]][ b[n, n, 1]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A353506
Number of integer partitions of n whose parts have the same product as their multiplicities.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 3, 3, 2, 3, 2, 0, 2, 3, 2, 1, 3, 1, 6, 3, 2, 3, 3, 2, 3, 4, 1, 2, 3, 6, 3, 2, 2, 3, 3, 1, 2, 6, 6, 4, 7, 2, 3, 6, 4, 3, 3, 0, 4, 5, 3, 5, 5, 6, 5, 3, 3, 3, 6, 5, 5, 6, 6, 3, 3, 3, 4, 4, 4, 6, 7, 2, 5, 7, 6, 2, 3, 4, 6, 11, 9, 4, 4, 1, 5, 6, 4, 7, 9, 6, 4
Offset: 0
The a(0) = 1 through a(18) = 2 partitions:
n= 0: ()
n= 1: (1)
n= 2:
n= 3:
n= 4: (211)
n= 5:
n= 6: (3111) (2211)
n= 7:
n= 8: (41111)
n= 9:
n=10: (511111)
n=11: (32111111)
n=12: (6111111) (22221111)
n=13: (322111111)
n=14: (71111111) (4211111111)
n=15:
n=16: (811111111) (4411111111) (42211111111)
n=17: (521111111111) (332111111111) (322211111111)
n=18: (9111111111) (333111111111)
For example, the partition y = (322111111) has multiplicities (1,2,6) with product 12, and the product of parts is also 3*2*2*1*1*1*1*1*1 = 12, so y is counted under a(13).
RHS (product of multiplicities) is ranked by
A005361, counted by
A266477.
For shadows instead of prime exponents we have
A008619, ranked by
A003586.
Taking sum instead of product of parts gives
A266499.
For shadows instead of prime indices we have
A353398, ranked by
A353399.
These partitions are ranked by
A353503.
Taking sum instead of product of multiplicities gives
A353698.
A008284 counts partitions by length.
A098859 counts partitions with distinct multiplicities, ranked by
A130091.
A353507 gives product of multiplicities (of exponents) in prime signature.
-
Table[Length[Select[IntegerPartitions[n], Times@@#==Times@@Length/@Split[#]&]],{n,0,30}]
-
a(n) = {my(nb=0); forpart(p=n, my(s=Set(p), v=Vec(p)); if (vecprod(vector(#s, i, #select(x->(x==s[i]), v))) == vecprod(v), nb++);); nb;} \\ Michel Marcus, May 20 2022
A353698
Number of integer partitions of n whose product equals their length.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 1, 2, 5, 1, 4, 0, 3, 3, 2, 1, 4, 2, 3, 2, 2, 0, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 4, 0, 4, 3, 3, 1, 6, 2, 3, 4, 4, 2, 4, 1, 4, 2, 3, 1, 8, 2, 4, 2, 4, 2, 5, 2, 4, 2
Offset: 0
The a(n) partitions for selected n (A..H = 10..17):
n=9: n=21: n=27: n=33:
---------------------------------------------------------------------------
51111 B1111111111 E1111111111111 H1111111111111111
321111 72111111111111 921111111111111111 B211111111111111111111
531111111111111 54111111111111111111 831111111111111111111111
4221111111111111 5511111111111111111111111
333111111111111111111111111
The LHS (product of parts) is counted by
A339095, rank statistic
A003963.
These partitions are ranked by
A353699.
A266477 counts partitions by product of multiplicities, rank stat
A005361.
A353504 counts partitions w/ product less than product of multiplicities.
A353505 counts partitions w/ product greater than product of multiplicities.
A353506 counts partitions w/ prod equal to prod of mults, ranked by
A353503.
Cf.
A000041,
A002033,
A098859,
A114640,
A181819,
A225485,
A266499,
A319000,
A325280,
A353398,
A353507.
-
Table[Length[Select[IntegerPartitions[n],Times@@#==Length[#]&]],{n,0,30}]
-
a(r,m=r,p=1,k=0) = {(p==k+r) + sum(m=2, min(m, (k+r)\p), self()(r-m, min(m,r-m), p*m, k+1))} \\ Andrew Howroyd, Jan 02 2023
A353741
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 3, 1, 1, 4, 2, 2, 1, 4, 1, 1, 1, 3, 2
Offset: 0
Triangle begins:
1
1
1 1
1 1 1
1 1 1 2
1 1 1 2 1 1
1 1 1 2 1 2 2 1
1 1 1 2 1 2 1 2 1 1 2
1 1 1 2 1 2 1 3 1 1 3 1 3 1
1 1 1 2 1 2 1 3 2 1 3 1 1 3 2 2 2 1
1 1 1 2 1 2 1 3 2 2 3 1 1 4 2 2 1 4 1 1 1 3 2
Row n = 7 counts the following partitions:
1111111 211111 31111 4111 511 61 7 421 331 52 43
22111 3211 2221 322
A225485 counts partitions by frequency depth.
A266477 counts partitions by product of multiplicities, ranked by
A005361.
-
DeleteCases[Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,10},{k,1,2^n}],0,2]
Showing 1-4 of 4 results.
Comments