A081038
3rd binomial transform of (1,2,0,0,0,0,0,0,...).
Original entry on oeis.org
1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 13.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
A269914
Number of ternary strings of length n with maximal run length two containing 112.
Original entry on oeis.org
1, 5, 20, 71, 237, 761, 2377, 7278, 21945, 65375, 192861, 564387, 1640496, 4741103, 13634501, 39042437, 111379025, 316687006, 897796581, 2538530615, 7160768785, 20156241155, 56626360256, 158804376883, 444638710925, 1243115597929, 3470779612521, 9678320566654
Offset: 3
- Math StackExchange, Words built with 0,1,2
- Marko Riedel, Maple code by total enumeration and by generating function.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-5,-11,-8,-2).
-
Drop[CoefficientList[Series[x^3 (x + 1) (x^2 + x + 1)/((2 x^2 + 2 x - 1) (x^4 + 3 x^3 + 3 x^2 + x - 1)), {x, 0, 30}], x], 3] (* Michael De Vlieger, Mar 08 2016 *)
A269915
Number of ternary strings of length n with maximal run length three containing 1112.
Original entry on oeis.org
1, 5, 21, 80, 287, 993, 3347, 11067, 36055, 116089, 370222, 1171353, 3681375, 11504101, 35772799, 110760185, 341640131, 1050254568, 3218970519, 9839399805, 30002862947, 91284474775, 277176264351, 840067321393, 2541769382014, 7678558044741, 23163047559031
Offset: 4
- Math StackExchange, Words built with 0,1,2
- Marko Riedel, Maple code by total enumeration and by generating function.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1,-13,-23,-25,-18,-8,-2).
-
Drop[CoefficientList[Series[x^4 (x + 1) (x^2 + 1) (x^2 + x + 1)/((x^6 + 3 x^5 + 5 x^4 + 5 x^3 + 3 x^2 + x - 1) (2 x^3 + 2 x^2 + 2 x - 1)), {x, 0, 30}], x], 4] (* Michael De Vlieger, Mar 08 2016 *)
A269916
Number of ternary strings of length n with maximal run length four containing 11112.
Original entry on oeis.org
1, 5, 21, 81, 296, 1043, 3585, 12095, 40221, 132225, 430633, 1391623, 4467689, 14262766, 45311977, 143343279, 451768405, 1419092951, 4444424613, 13882255419, 43256925753, 134492621659, 417322590000, 1292554593007, 3996626787973, 12338508959035, 38037021764053
Offset: 5
- Math StackExchange, Words built with 0,1,2
- Marko Riedel, Maple code by total enumeration and by generating function.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1,-9,-25,-39,-45,-43,-32,-18,-8,-2).
-
Drop[CoefficientList[Series[x^5 (x + 1) (x^2 + 1) (x^4 + x^3 + x^2 + x + 1)/((x^8 + 3 x^7 + 5 x^6 + 7 x^5 + 7 x^4 + 5 x^3 + 3 x^2 + x - 1) (2 x^4 + 2 x^3 + 2 x^2 + 2 x - 1)), {x, 0, 31}], x], 5] (* Michael De Vlieger, Mar 08 2016 *)
A309000
Number of strings of length n from a 3-symbol alphabet (A,B,C, say) containing at least one "A" and at least two "B"s.
Original entry on oeis.org
3, 22, 105, 416, 1491, 5034, 16365, 51892, 161799, 498686, 1524705, 4635528, 14037627, 42391378, 127763925, 384536924, 1156232175, 3474201510, 10434138825, 31326533680, 94029932643, 282194655482, 846802070205, 2540859195396, 7623517110231, 22872497487694
Offset: 3
Suppose three-sided dice each have sides labeled A,B,C.
If there are three dice, then ABB, BAB, and BBA are the three strings resulting from rolling the dice satisfying the property of at least one A and at least two B's, hence a(3)=3 [Note a(0)=a(1)=a(2)=0].
If there are four such dice, there are 22 such permutations, hence a(4)=22: AABB, ABAB, ABBA, ABBB, ABBC, ABCB, ACBB, BAAB, BABA, BABB, BABC, BACB, BBAA, BBAB, BBAC, BBBA, BBCA, BCAB, BCBA, CABB, CBAB, CBBA.
-
[3^n-2^(n+1)-n*2^(n-1)+n+1: n in [3..40]]; // Vincenzo Librandi, Jul 05 2019
-
Array[3^# - 2^(# + 1) - # 2^(# - 1) + # + 1 &, 27, 3] (* or *)
CoefficientList[Series[(-3 + 5 x)/((-1 + 3 x) (1 - 3 x + 2 x^2)^2), {x, 0, 26}], x] (* Michael De Vlieger, Jul 04 2019 *)
-
[3**n-2**(n+1)-n*2**(n-1)+n+1 for n in range(3,20)]
Showing 1-5 of 5 results.
Comments