cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).

A367515 The number of unitary divisors of n that are exponentially odious numbers (A270428).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[DigitCount[e, 2, 1]], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> hammingweight(x)%2+1, factor(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A367515(n): return 1<Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = A001285(e).
a(n) = A034444(n)/A367516(n).
a(n) = 2^A293439(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= A034444(n), with equality if and only if n is an exponentially odious number (A270428).

A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

First differs from its subsequence A005117 at n = 79: a(79) = 128 is not a squarefree number.
First differs from A077377 at n = 63, and from A348506 at n = 68.
Numbers whose prime factorization contains only exponents that are odd odious numbers (A092246).
The asymptotic density of this sequence is Product_{p prime} f(1/p) = 0.61156148494581943994..., where f(x) = (1-x) * (1 + x/(2*(1-x^2)) + (Product_{k>=0} (1-(-x)^(2^k)) - Product_{k>=0} (1-x^(2^k))))/2.

Crossrefs

Intersection of A268335 and A270428.
Subsequences: A005117, A092759.
Cf. A092246.

Programs

  • Mathematica
    odQ[n_] := OddQ[n] && OddQ[DigitCount[n, 2, 1]]; Select[Range[150], AllTrue[FactorInteger[#][[;;, 2]], odQ] &]
  • PARI
    is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2 && hammingweight(f[i, 2])%2), return (0))); 1;}

A367931 a(n) is the smallest number k such that k*n is an exponentially odious number (A270428).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2023

Keywords

Crossrefs

Similar sequences: A365298, A365685, A367932.

Programs

  • Mathematica
    f[p_, e_] := Module[{k = e}, While[! OddQ[DigitCount[k, 2 ,1]], k++]; p^(k-e)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = {my(k = e); while(!(hammingweight(k)%2), k++); k - e; };
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]));}

Formula

Multiplicative with a(p^e) = p^s(e), where s(e) = min{k >= e, k is odious} - e.
a(n) = A367933(n)/n.
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.30023300..., where f(x) = (1-x) * (1 + Sum_{k>=1} x*(k-s(k))), and s(k) is defined above.

A367696 Numbers k such that k and k+1 are both exponentially odious numbers (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 8, 78, 762, 7615, 76113, 761127, 7611222, 76111895, 761119135, 7611190807, ... . Apparently, the asymptotic density of this sequence exists and equals 0.761119... .

Crossrefs

Subsequence of A270428.
Subsequences: A007674, A367697.
Similar sequences: A071318, A121495, A340152, A367695.

Programs

  • Mathematica
    expOdQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &]; Select[Range[100], And @@ expOdQ /@ {#, # + 1} &]
  • PARI
    isexpod(n) = {my(f = factor(n)); for(i=1, #f~, if (!(hammingweight(f[i, 2]) % 2), return (0))); 1;}
    is(n) = isexpod(n) && isexpod(n+1)

A367933 a(n) is the smallest multiple of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 128, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 128, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2023

Keywords

Crossrefs

Similar sequences: A356192, A365684, A367934.

Programs

  • Mathematica
    f[p_, e_] := Module[{k = e}, While[! OddQ[DigitCount[k, 2 ,1]], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = {my(k = e); while(!(hammingweight(k)%2), k++); k; };
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

Multiplicative with a(p^e) = p^s(e), s(e) = min{k >= e, k is odious}.
a(n) = n * A367931(n).
a(n) >= n, with equality if and only if n is an exponentially odious number (A209061).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.30023300... , where f(x) = (1-x) * (1 + Sum_{k>=1} x^(2*k-s(k))), and s(k) is defined above.

A367697 Starts of runs of 15 consecutive integers that are exponentially odious numbers (A270428).

Original entry on oeis.org

9, 73, 137, 169, 201, 393, 521, 553, 633, 649, 713, 761, 809, 841, 889, 1001, 1033, 1065, 1129, 1145, 1193, 1225, 1273, 1289, 1353, 1385, 1513, 1545, 1577, 1609, 1657, 1769, 1785, 1865, 1897, 1929, 2025, 2089, 2169, 2217, 2297, 2345, 2377, 2409, 2441, 2505, 2569
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The maximal length of a run of consecutive exponentially odious numbers is 15 since numbers of the form 16*k + 8 are not exponentially odious. Thus all the terms of this sequence are of the form 16*k + 9 with k = 0, 4, 8, 10, 12, 24, 32, 34, 39, 40, ... .
The numbers of terms not exceeding 10^k for k = 1, 2, ... , are 1, 2, 15, 176, 1821, 18120, 181277, 1812917, 18129256, 181290721, ... . Apparently, the asymptotic density of this sequence exists and equals 0.018129... .

Crossrefs

Subsequence of A270428 and A367696.
Similar sequences: A007675, A194002, A325058, A328016.

Programs

  • Mathematica
    expOdQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &]; q[n_] := AllTrue[16*n + Range[9, 23], expOdQ]; 16 * Select[Range[0, 160], q] + 9
  • PARI
    isexpod(n) = {my(f = factor(n)); for(i=1, #f~, if (!(hammingweight(f[i, 2]) % 2), return (0))); 1;}
    is(n) = {my(k = (n-9)/16); if(denominator(k) > 1, return(0)); for(i=9, 23, if(!isexpod(16*k + i), return(0))); 1;}

A367698 The smallest divisor d of n such that n/d is an exponentially odious number (A270428).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

First differs from A055229 at n = 64.

Crossrefs

Programs

  • Mathematica
    maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^(e - maxOdious[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); n-k; }
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

a(n) = n/A366905(n).
Multiplicative with a(p^e) = p^(e-s(e)), where s(e) = max({k=1..e, k odious}).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.25857819194624249136..., where f(x) = (1-x)*(1+Sum_{k>=1} x^s(k)), s(k) is defined above for k >= 1, and s(0) = 0.

A209061 Exponentially squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 13 2012

Keywords

Comments

Numbers having only squarefree exponents in their canonical prime factorization.
According to the formula of Theorem 3 [Toth], the density of the exponentially squarefree numbers is 0.9559230158619... (A262276). - Peter J. C. Moses and Vladimir Shevelev, Sep 10 2015
From Vladimir Shevelev, Sep 24 2015: (Start)
A generalization. Let S be a finite or infinite increasing integer sequence s=s(n), s(0)=0.
Let us call a positive number N an exponentially S-number, if all exponents in its prime power factorization are in the sequence S.
Let {u(n)} be the characteristic function of S. Then, for the density h=h(S) of the exponentially S-numbers, we have the representations
h(S) = Product_{prime p} Sum_{j in S} (p-1)/p^(j+1) = Product_{p} (1 + Sum_{j>=1} (u(j) - u(j-1))/p^j). In particular, if S = {0,1}, then the exponentially S-numbers are squarefree numbers; if S consists of 0 and {2^k}A138302%20(see%20%5BShevelev%5D,%202007);%20if%20S%20consists%20of%200%20and%20squarefree%20numbers,%20then%20u(n)=%7Cmu(n)%7C,%20where%20mu(n)%20is%20the%20M%C3%B6bius%20function%20(A008683),%20we%20obtain%20the%20density%20h%20of%20the%20exponentially%20squarefree%20numbers%20(cf.%20Toth's%20link,%20Theorem%203);%20the%20calculation%20of%20h%20with%20a%20very%20high%20degree%20of%20accuracy%20belongs%20to%20_Juan%20Arias-de-Reyna">{k>=0}, then the exponentially S-numbers form A138302 (see [Shevelev], 2007); if S consists of 0 and squarefree numbers, then u(n)=|mu(n)|, where mu(n) is the Möbius function (A008683), we obtain the density h of the exponentially squarefree numbers (cf. Toth's link, Theorem 3); the calculation of h with a very high degree of accuracy belongs to _Juan Arias-de-Reyna (A262276). Note that if S contains 1, then h(S) >= 1/zeta(2) = 6/Pi^2; otherwise h(S) = 0. Indeed, in the latter case, the density of the sequence of exponentially S-numbers does not exceed the density of A001694, which equals 0. (End)
The term "exponentially squarefree number" was apparently coined by Subbarao (1972). - Amiram Eldar, May 28 2025

Crossrefs

Programs

  • Haskell
    a209061 n = a209061_list !! (n-1)
    a209061_list = filter
       (all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
    
  • Mathematica
    Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); for(i=1,#f,if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A166234(a(n)) <> 0.
Product_{k=1..A001221(n)} A008966(A124010(n,k)) = 1.
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015
Showing 1-10 of 25 results. Next