cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A219537 G.f. satisfies A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 3, 13, 66, 366, 2148, 13115, 82449, 530095, 3469401, 23037642, 154820262, 1050999343, 7196493255, 49644745965, 344704716018, 2407157839593, 16895247295947, 119121868831235, 843306880720218, 5992060655349521, 42718501097385207, 305476181765843358
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2012

Keywords

Comments

a(n) is the number of noncrossing partial matchings on points 1, 2, ... , 3*n where point 1 is unmatched if n>0 and only points congruent modulo 3 can be matched. See Example 57 on p. 47 of the Burstein-Shapiro reference. - Alexander Burstein, Jun 03 2022

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 366*x^5 + 2148*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 167*x^4 + 942*x^5 + 5593*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 312*x^4 + 1794*x^5 + 10794*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 511*x^4 + 3000*x^5 + 18316*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 775*x^4 + 4651*x^5 + 28845*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 188*x^3 + 1116*x^4 + 6852*x^5 + 43204*x^6 +...
where A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4),
and A(x)^2 = 1 + x*(A(x)^2 + A(x)^5),
and A(x)^3 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^6),
and A(x)^4 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^7),
and A(x)^5 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^6 + A(x)^8), etc.
The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where
F(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 51*x^7 +...+ A001006(n-1)*x^n +...
is a g.f. of the Motzkin numbers (A001006, shifted right 1 place).
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...+ A106228(n)*x^n +...
satisfies G(x) = 1 + x*G(x)/(1 - x*G(x)^2).
		

Crossrefs

Programs

  • Maple
    rec := {(36*n^4+126*n^3+126*n^2+36*n)*a(n)+(-276*n^4-1548*n^3-3198*n^2-2898*n-972)*a(n+1)+(940*n^4+7090*n^3+19916*n^2+24650*n+11316)*a(n+2)+(-845*n^4-9000*n^3-34159*n^2-53004*n-26136)*a(n+3)+(-260*n^4-5200*n^3-37454*n^2-116538*n-133128)*a(n+4)+(459*n^4+9774*n^3+77955*n^2+276012*n+366060)*a(n+5)+(-54*n^4-1242*n^3-10686*n^2-40758*n-58140)*a(n+6), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 13, a(4) = 66, a(5) = 366}:
    f:= gfun:-rectoproc(rec,a(n),remember):
    map(f, [$0..50]); # Robert Israel, Feb 25 2018
  • Mathematica
    nmax = 23; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x (A[x]^2 - A[x]^3 + A[x]^4)) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    /* Formula A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4): */
    {a(n)=local(A=1);for(i=1,n,A=1+x*(A^2-A^3+A^4) +x*O(x^n));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula using Series Reversion involving Motzkin numbers: */
    {a(n)=local(A=1);A=(1+x-sqrt(1-2*x-3*x^2+x^3*O(x^n)))/(2*x); polcoeff(sqrt(1/x*serreverse(x/A^2)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. A(x) satisfies [from Paul D. Hanna, Mar 21 2016]: (Start)
(1) A(x)^2 = 1 + x*(A(x)^2 + A(x)^5).
(2) A(x)^3 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^6).
Let F(x) = (1+x - sqrt(1 - 2*x - 3*x^2)) / (2*x), then g.f. A(x) satisfies:
(3) A(x) = sqrt( (1/x)*Series_Reversion(x/F(x)^2) ),
(4) A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2),
where F(x) = 1 + x*M(x) such that M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006).
Let G(x) = 1 + x*G(x)/(1 - x*G(x)^2), then g.f. A(x) satisfies:
(5) A(x) = (1/x)*Series_Reversion(x/G(x)),
(6) A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
where G(x) is the g.f. of A106228. (End)
Recurrence: 3*n*(3*n-1)*(3*n+1)*(5*n-11)*(5*n-8)*(5*n-6)*a(n) = 6*(5*n-11)*(900*n^5 - 3870*n^4 + 6033*n^3 - 4165*n^2 + 1238*n - 120)*a(n-1) - 2*(n-2)*(5*n-1)*(950*n^4 - 5510*n^3 + 11199*n^2 - 9207*n + 2430)*a(n-2) + 6*(n-3)*(n-2)*(2*n-5)*(5*n-6)*(5*n-3)*(5*n-1)*a(n-3). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ sqrt(300+75*10^(2/3)+30*10^(1/3))/90 * (5/9*10^(2/3)+10/9*10^(1/3)+8/3)^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
Recurrence: 18*n*(2*n+1)*(n+2)*(n+1)*a(n)-(6*(n+1))*(n+2)*(46*n^2+120*n+81)*a(n+1)+(2*(n+2))*(470*n^3+2605*n^2+4748*n+2829)*a(n+2)-(n+3)*(845*n^3+6465*n^2+14764*n+8712)*a(n+3)-(2*(n+4))*(130*n^3+2080*n^2+10407*n+16641)*a(n+4)+(3*(n+5))*(153*n^3+2493*n^2+13520*n+24404)*a(n+5)-(6*(n+5))*(3*n+17)*(3*n+19)*(n+6)*a(n+6) = 0. - Robert Israel, Feb 25 2018
G.f. A(x) satisfies: A(-x*A(x)^5) = 1/A(x). - Alexander Burstein, Jun 03 2022
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+k,n-1-k) for n > 0. - Seiichi Manyama, Aug 05 2023
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(4*n-2*k,n-1-k) for n > 0. - Seiichi Manyama, Aug 06 2023
G.f.: A(x) = sqrt(B(x)) where B(x) is the g.f. of A366400. - Seiichi Manyama, Mar 31 2024
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+3*k/2+1/2,n)/(2*n+3*k+1). - Seiichi Manyama, Apr 04 2024
G.f.: Sum_{k>=0} binomial(5*k/2 + 1/2, k)*x^k/((5*k + 1)*(1 - x)^((5*k + 1)/2)). - Miles Wilson, Feb 02 2025

A364765 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 5, 36, 304, 2808, 27475, 279845, 2935987, 31511097, 344344868, 3818320487, 42855633210, 485923475563, 5557803724920, 64046876264292, 742908320701832, 8667090253409215, 101631581618367133, 1197190915359577973, 14160413911721178800
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n+k, n-1-k))/n);

Formula

G.f. satisfies A(x) = 1 + x*A(x)^6 / (1 + x*A(x)^4).
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n+k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(6*n-2*k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(5*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024

A364864 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 / (1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 2, 4, 6, -1, -58, -304, -1090, -2876, -4216, 9244, 106746, 529962, 1874628, 4669760, 4309742, -35179252, -277928680, -1269921008, -4214431912, -9197175241, 30113526, 128659598896, 822227670866, 3453484223084, 10519017940952, 18490932535144
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*2^(n-k)*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(3*n+k+1,n) / (3*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * binomial(3*n,k-1) for n > 0.

A370474 G.f. A(x) satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(3/2)).

Original entry on oeis.org

1, 2, 9, 54, 372, 2778, 21873, 178786, 1502649, 12904524, 112741664, 998871030, 8953443276, 81047485148, 739846170864, 6803054508702, 62954736555836, 585850907166084, 5479077065774682, 51470699845616004, 485456696541512442, 4595280949098247422
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+3*k/2+1, n)/(3*n/2+3*k/2+1));
    
  • PARI
    a(n, r=2, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 12 2024

Formula

a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+3*k/2+1,n)/(3*n/2+3*k/2+1).
From Seiichi Manyama, Dec 12 2024: (Start)
G.f. A(x) satisfies:
(1) A(x) = ( 1 + x*A(x)^(5/2)/(1 + x*A(x)^(3/2)) )^2.
(2) A(x) = 1/( 1 - x*A(x)^2/(1 + x*A(x)^(3/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)

A371661 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 64, 1424, 36800, 1036160, 30843648, 954671360, 30415326208, 990831196160, 32853724512256, 1105132250898432, 37620337933582336, 1293586791397064704, 44863864476704768000, 1567543145774827241472, 55125711913212153954304
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A371669(n). - Seiichi Manyama, Dec 26 2024

A378892 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 5, 37, 322, 3067, 30951, 325171, 3519038, 38959997, 439177850, 5023590609, 58163050071, 680308820750, 8026782091957, 95419476630100, 1141762194395927, 13740910664096101, 166216043531507231, 2019807368837970964, 24644779751103948475, 301818330734940817283
Offset: 0

Views

Author

Seiichi Manyama, Dec 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=-1, t=6, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^3)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A365194 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).

Original entry on oeis.org

1, 1, 6, 52, 529, 5889, 69462, 853013, 10791018, 139659604, 1840435530, 24611295075, 333132371248, 4555465710569, 62839303262352, 873363902976309, 12218178082489873, 171918448407833112, 2431415226089290680, 34544425914499450493, 492807213597429920649
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*n+2*k+1,k) * binomial(n-1,n-k)/(5*n+2*k+1).
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(6*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Dec 26 2024

A365225 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 4, 24, 169, 1301, 10605, 89963, 785943, 7023148, 63892489, 589771350, 5509967214, 52001860377, 495048989686, 4748144843341, 45838627944500, 445072967642096, 4343508043479012, 42581707009501604, 419158119684986781, 4141270208611084284
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*n+3*k+1, k)*binomial(n-1, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*n+3*k+1,k) * binomial(n-1,n-k)/(2*n+3*k+1).

A370476 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 5, 38, 342, 3377, 35371, 385945, 4339656, 49932707, 585090560, 6957809536, 83757820470, 1018680937003, 12498390564184, 154508184836297, 1922689912844045, 24064811129732875, 302750645498966609, 3826284443456719470, 48557449822608739500
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1/2, n)/(3*n+5*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x)^3 * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370475.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1/2,n)/(3*n+5*k+1).

A365226 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^6).

Original entry on oeis.org

1, 1, 4, 20, 107, 577, 3010, 14429, 56640, 98020, -1297568, -21901213, -232421636, -2081040375, -16862259358, -126674303915, -887771735205, -5768588276072, -33971373570320, -170393703586467, -576946353425125, 1101490168511323, 47657979846612682
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).
Showing 1-10 of 13 results. Next