cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A255241 Decimal expansion of 2*cos(3*Pi/7).

Original entry on oeis.org

4, 4, 5, 0, 4, 1, 8, 6, 7, 9, 1, 2, 6, 2, 8, 8, 0, 8, 5, 7, 7, 8, 0, 5, 1, 2, 8, 9, 9, 3, 5, 8, 9, 5, 1, 8, 9, 3, 2, 7, 1, 1, 1, 3, 7, 5, 2, 9, 0, 8, 9, 9, 1, 0, 6, 2, 3, 9, 7, 4, 0, 3, 1, 7, 9, 4, 8, 4, 2, 4, 6, 4, 0, 5, 7, 0, 9, 4, 6, 3, 8, 1, 4, 9, 1, 6, 2, 1, 0, 5, 2, 1, 6, 1, 4, 5, 9, 1, 2, 6, 9, 7, 4, 9, 4
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2015

Keywords

Comments

This is also the decimal expansion of 2*sin(Pi/14).
rho_2 := 2*cos(3*Pi/7) and rho(7) := 2*cos(Pi/7) (see A160389) are the two positive zeros of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The other zero is negative, rho_3 := 2*cos(5*Pi/n). See -A255249.
Also the edge length of a regular 14-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272487). - Stanislav Sykora, May 01 2016

Examples

			0.445041867912628808577805128993589518932711137529089910623974031...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Edge lengths of other nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A130880 (n=18), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Magma
    R:= RealField(120); 2*Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
    
  • Mathematica
    RealDigits[N[2Cos[3Pi/7], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/14)
    
  • PARI
    polrootsreal(x^3 - x^2 - 2*x + 1)[2] \\ Charles R Greathouse IV, Oct 30 2023
    
  • SageMath
    numerical_approx(2*cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022

Formula

2*cos(3*Pi/7) = 2*sin(Pi/14) = 2*A232736 = 1/A231187 = 0.4450418679...
See A232736 for the decimal expansion of cos(3*Pi/7) = sin(Pi/14).
Equals i^(6/7) - i^(8/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 11 2021: (Start)
Equals 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)), where z = exp(2*Pi*i/7).
Equals 1 - A255240. (End)

Extensions

Offset corrected by Stanislav Sykora, May 01 2016

A130880 Decimal expansion of 2*sin(Pi/18).

Original entry on oeis.org

3, 4, 7, 2, 9, 6, 3, 5, 5, 3, 3, 3, 8, 6, 0, 6, 9, 7, 7, 0, 3, 4, 3, 3, 2, 5, 3, 5, 3, 8, 6, 2, 9, 5, 9, 2, 0, 0, 0, 7, 5, 1, 3, 5, 4, 3, 6, 8, 1, 3, 8, 7, 7, 4, 4, 7, 2, 4, 8, 2, 7, 5, 6, 2, 6, 4, 1, 3, 1, 6, 4, 4, 2, 7, 8, 0, 2, 9, 4, 7, 0, 8, 4, 3, 0, 3, 3, 2, 2, 6, 3, 1, 4, 7, 9, 9, 1, 4, 8, 0, 2, 3, 9, 1, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2007

Keywords

Comments

Also: a bond percolation threshold probability on the triangular lattice.
Also: the edge length of a regular 18-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272488). - Stanislav Sykora, May 01 2016

Examples

			0.347296355333860697703433253538629592...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.18.1, p. 373.

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/18], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/18)

Formula

Equals 2*A019819 = A019829/A019889.
Algebraic number with minimal polynomial over Q equal to x^3 - 3*x + 1, a cyclic cubic, having zeros 2*sin(Pi/18) (= 2*cos(4*Pi/9)), 2*sin(5*Pi/18) (= 2*cos(2*Pi/9)) and -2*sin(7*Pi/18) (= -2*cos(Pi/9)). Cf. A332437. - Peter Bala, Oct 23 2021
Equals 2 + rho(9) - rho(9)^2, an element of the extension field Q(rho(9)), with rho(9) = 2*cos(Pi/9) = A332437 with minimal polynomial x^3 - 3*x - 1 over Q. - Wolfdieter Lang, Sep 20 2022
Equals -1 + Product_{k>=3} (1 - (-1)^k/A063289(k)). - Amiram Eldar, Nov 22 2024
Equals A133749/2 = 1 - A178959. - Hugo Pfoertner, Dec 15 2024

A004169 Values of m for which a regular polygon with m sides cannot be constructed with ruler and compass.

Original entry on oeis.org

7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

N. J. A. Sloane, Branislav Kisacanin (bkisacan(AT)eecs.uic.edu)

Keywords

Comments

Numbers m for which phi(a(m)) is not a power of 2, phi = A000010, Euler's totient function. - Reinhard Zumkeller, Jul 31 2012
Numbers m for which A295660(m) > 1. - Lorenzo Sauras Altuzarra, Nov 04 2018

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Cf. A003401 (complement).
Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A130880 (n=18), A272491 (n=19).

Programs

  • Haskell
    a004169 n = a004169_list !! (n-1)
    a004169_list = map (+ 1) $ elemIndices 0 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[75], !IntegerQ[ Log[2, EulerPhi[#] ] ]& ] (* Jean-François Alcover, Nov 24 2011, after A003401 *)
  • PARI
    is(n)=my(t=4294967295); n>>=valuation(n,2); n/=gcd(n,t); if(gcd(n,t)>1, return(1)); if(n==1, return(0)); if(n<9e2585827972, return(1)); forprime(p=7,1e5, if(n%p==0, return(1))); warning("Result is conjectural on the nonexistence of Fermat primes >= F(33)."); 1 \\ Charles R Greathouse IV, Oct 23 2015

Formula

a(n) = n + O(log^2 n). - Charles R Greathouse IV, Oct 23 2015

A272487 Decimal expansion of the edge length of a regular heptagon with unit circumradius.

Original entry on oeis.org

8, 6, 7, 7, 6, 7, 4, 7, 8, 2, 3, 5, 1, 1, 6, 2, 4, 0, 9, 5, 1, 5, 3, 6, 6, 6, 5, 6, 9, 6, 7, 1, 7, 5, 0, 9, 2, 1, 9, 9, 8, 1, 4, 5, 5, 5, 7, 4, 9, 1, 9, 7, 5, 2, 8, 8, 9, 0, 9, 4, 6, 0, 7, 0, 6, 4, 4, 0, 6, 5, 0, 3, 3, 0, 6, 3, 9, 6, 8, 4, 3, 0, 4, 1, 5, 6, 8, 0, 4, 3, 5, 4, 8, 9, 1, 2, 2, 0, 4, 1, 7, 7, 4, 8, 8
Offset: 0

Views

Author

Stanislav Sykora, May 01 2016

Keywords

Comments

The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 7, and the constant, a = e(7), is the smallest m for which e(m) is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).

Examples

			0.8677674782351162409515366656967175092199814555749197528890946...
		

Crossrefs

Cf. A160389.
Edge lengths of nonconstructible n-gons: A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A130880 (n=18), A272491 (n=19).

Programs

  • Mathematica
    N[2*Sin[Pi/7], 25] (* G. C. Greubel, May 01 2016 *)
    RealDigits[2*Sin[Pi/7],10,120][[1]] (* Harvey P. Dale, Mar 07 2020 *)
  • PARI
    2*sin(Pi/7)

Formula

Equals 2*sin(Pi/7) = 2*cos(Pi*5/14).
Equals i^(-5/7) + i^(5/7). - Gary W. Adamson, Feb 12 2022
One of the 6 real-valued roots of x^6 -7*x^4 +14*x^2 -7 =0. - R. J. Mathar, Aug 29 2025

A272488 Decimal expansion of the edge length of a regular 9-gon with unit circumradius.

Original entry on oeis.org

6, 8, 4, 0, 4, 0, 2, 8, 6, 6, 5, 1, 3, 3, 7, 4, 6, 6, 0, 8, 8, 1, 9, 9, 2, 2, 9, 3, 6, 4, 5, 1, 9, 1, 6, 1, 5, 2, 6, 1, 6, 6, 7, 3, 5, 0, 2, 8, 3, 2, 1, 2, 5, 6, 9, 3, 0, 0, 9, 6, 9, 9, 5, 3, 6, 9, 4, 2, 9, 5, 2, 7, 4, 0, 4, 1, 5, 5, 1, 9, 9, 1, 2, 8, 3, 8, 0, 3, 6, 4, 6, 7, 7, 0, 5, 1, 0, 9, 5, 0, 8, 0, 9, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, May 01 2016

Keywords

Comments

The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 9, and the constant, a = e(9), is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).

Examples

			0.6840402866513374660881992293645191615261667350283212569300969953...
		

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272489 (n=11), A272490 (n=13), A255241 (n=14), A130880 (n=18), A272491 (n=19).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/9], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/9)

Formula

Equals 2*sin(Pi/9) = 2*cos(Pi*7/18) = 2*A019829.
Equals Im((4+4*sqrt(3)*i)^(1/3)). - Gerry Martens, Mar 19 2024
A root of x^6 -6*x^4 +9*x^2 -3 =0. - R. J. Mathar, Aug 29 2025

A272489 Decimal expansion of the edge length of a regular 11-gon with unit circumradius.

Original entry on oeis.org

5, 6, 3, 4, 6, 5, 1, 1, 3, 6, 8, 2, 8, 5, 9, 3, 9, 5, 4, 2, 2, 8, 3, 5, 8, 3, 0, 6, 9, 3, 2, 3, 3, 7, 9, 8, 0, 7, 1, 5, 5, 5, 7, 9, 7, 9, 4, 6, 5, 3, 3, 7, 4, 3, 6, 6, 2, 1, 6, 0, 6, 1, 2, 1, 7, 5, 6, 9, 7, 5, 9, 7, 0, 3, 8, 0, 5, 8, 3, 3, 6, 2, 4, 6, 9, 3, 5, 2, 3, 6, 9, 0, 3, 7, 7, 3, 0, 9, 9, 9, 3, 5, 9, 8, 8
Offset: 0

Views

Author

Stanislav Sykora, May 01 2016

Keywords

Comments

The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 11, and the constant, a = e(11), is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).

Examples

			0.5634651136828593954228358306932337980715557979465337436621606121...
		

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272490 (n=13), A255241 (n=14), A130880 (n=18), A272491 (n=19).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/11], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/11)

Formula

Equals 2*sin(Pi/11) = 2*cos(Pi*9/22).

A272490 Decimal expansion of the edge length of a regular 13-gon with unit circumradius.

Original entry on oeis.org

4, 7, 8, 6, 3, 1, 3, 2, 8, 5, 7, 5, 1, 1, 5, 5, 3, 4, 2, 9, 7, 5, 0, 7, 4, 5, 2, 5, 2, 0, 4, 2, 3, 7, 9, 0, 4, 0, 6, 3, 4, 6, 0, 4, 5, 4, 7, 6, 6, 1, 2, 0, 2, 6, 7, 1, 0, 3, 1, 9, 4, 3, 7, 3, 2, 3, 6, 6, 3, 1, 2, 5, 7, 0, 1, 5, 0, 3, 7, 4, 3, 9, 2, 2, 3, 8, 9, 9, 6, 4, 4, 4, 1, 7, 2, 8, 8, 9, 4, 5, 1, 7, 9, 4, 6
Offset: 0

Views

Author

Stanislav Sykora, May 01 2016

Keywords

Comments

The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 13, and the constant, a = e(13), is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).

Examples

			0.47863132857511553429750745252042379040634604547661202671031943...
		

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A255241 (n=14), A130880 (n=18), A272491 (n=19).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/13], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/13)

Formula

Equals 2*sin(Pi/13) = 2*cos(Pi*11/26).
Showing 1-7 of 7 results.