cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002513 Number of "cubic partitions" of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 23, 31, 54, 73, 118, 159, 246, 329, 489, 651, 940, 1242, 1751, 2298, 3177, 4142, 5630, 7293, 9776, 12584, 16659, 21320, 27922, 35532, 46092, 58342, 75039, 94503, 120615, 151173, 191611, 239060, 301086, 374026, 468342, 579408, 721638, 889287
Offset: 0

Views

Author

Keywords

Comments

For a real polynomial equation of degree n, a(n) is the number of possibilities for the roots to be real and unequal, real and equal (in various combinations), or simple or multiple complex conjugates. For example, a(3)=4 because we can have: three equal roots, two equal roots, three distinct real roots and two complex roots (see the Monthly Problem reference). - Emeric Deutsch, Mar 22 2005
Number of partitions of n, the even parts being of two kinds. E.g. a(4)=9 because we have 4, 4', 3+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - Emeric Deutsch, Mar 22 2005
For the name "cubic partition" see Xiong; Chen & Lin; Chern & Dastidar. - Michel Marcus, Jan 28 2016

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 23*x^6 + 31*x^7 + 54*x^8 + 73*x^9 + ...
G.f. = 1/q + q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 23*q^47 + 31*q^55 + 54*q^63 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0930 and N0931).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 50: # to get a(0) to a(N)
    P:= mul((1-x^(2*k))^(-2)*(1-x^(2*k-1))^(-1),k=1..ceil(N/2)):
    S:= series(P, x, N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 26 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, d, 2*d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 05 2020
  • Mathematica
    max = 50; f[x_] := Product[ 1/((1-x^(2 k))^2*(1-x^(2k-1))), {k, 1, Ceiling[max/2]} ]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 04 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q] / QPochhammer[ q^2], {q, 0, n}];(* Michael Somos, Jul 17 2013 *)
    Table[Sum[PartitionsP[k]*PartitionsP[n-2k],{k,0,n/2}],{n,0,50}] (* Vaclav Kotesovec, Jun 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Nov 10 2005 */
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 2)
    a = EulerTransform(b)
    print([a(n) for n in range(44)]) # Peter Luschny, Nov 17 2022

Formula

From Michael Somos, Mar 23 2003: (Start)
Expansion of q^(1/8) / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 2 sequence [1, 2, ...].
G.f.: Product_{k>0} 1/((1 - x^(2*k))^2 * (1 - x^(2*k-1))).
(End)
Given g.f. A(x), then B(q) = A(q)^8 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 16*v^4 + v^3*w + 256*u*v^3 + 16*u*v^2*w - u^2*w^2. - Michael Somos, Apr 03 2005
a(n) ~ exp(Pi*sqrt(n)) / (8*n^(5/4)) * (1 - (Pi/16 + 15/(8*Pi))/sqrt(n)). - Vaclav Kotesovec, Jun 22 2015, extended Jan 17 2017
From Michel Marcus, Jan 28 2016: (Start)
G.f.: Product_{k>0} 1/((1 - x^k) * (1 - x^(2*k))).
a(3n+2) = 0 (mod 3).
a(25n+22) = 0 (mod 5) (see Xiong).
a(49n+15) = a(49n+29) = a(49n+36) = a(49n+43) = 0 (mod 7) (see Chen & Lin).
a(297n+62) = a(297n+161) = 0 (mod 11) (see Chern & Dastidar).
(End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(-7/2) (t/i)^-1 f(t) where q = exp(2 Pi i t). - Michael Somos, Oct 17 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018
From Peter Bala, Sep 25 2023: (Start)
The g.f. A(x) satisfies log(A(x)) = x + 5*x^2/2 + 4*x^3/3 + 13*x^4/4 + ... = Sum_{n >= 1} A215947(n)*x^n/n.
A(x^2) = 4/(F(x)*F(-x)) = 2/(F(x)*G(-x)), where F(x) = Sum_{n = -oo..oo} x^(n*(n+1)/2) is the g.f. of A089799 and G(x) = Sum_{n = -oo..oo} x^(n^2) is the g.f. of A000122. Cf. A001934. Note that 4/(F(-x)*F(-x)) is the g.f. of A273225.
The self-convolution A(x)^2 is the g.f. of A319455. (End)

Extensions

More terms and information from Michael Somos, Mar 23 2003

A274621 Coefficients in the expansion Product_{ n>=1 } (1-q^(2n-1))^2/(1-q^(2n))^2.

Original entry on oeis.org

1, -2, 3, -6, 11, -18, 28, -44, 69, -104, 152, -222, 323, -460, 645, -902, 1254, -1722, 2343, -3174, 4278, -5722, 7601, -10056, 13250, -17358, 22623, -29382, 38021, -48984, 62857, -80404, 102528, -130282, 165002, -208398, 262495, -329666, 412878, -515840, 642941, -799362, 991478
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2016

Keywords

Comments

This is the reciprocal of the g.f. for A008441.
From Wolfdieter Lang, Jul 05 2016: (Start)
The g.f. is the square of the one for A106507.
Expansion of 1/(k/(4*q^(1/2)) * (2/Pi)*K(k)) in powers of q^2, where k is the modulus (k^2 is the parameter), K is the real quarter period and q is the Jacobi nome of elliptic functions. See a similar Jul 05 2016 comment on A008441. This appears as a factor in the sn and cn formulas of Abramowitz-Stegun. p. 575, 16.23.1 and 16.23.2. (End)

References

  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.

Crossrefs

If the signs are deleted we get A273225.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^(2*k-1))^2 / (1 - x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)

Formula

From Wolfdieter Lang, Jul 05 2016: (Start)
G.f.: 1/(theta_2(0, sqrt(q))/(2*q^(1/8)))^2, with the Jacobi theta_2 function.
G.f.: 1/(Sum_{n >= 0} q^(n*(n+1)/2))^2.
G.f.: 1/(Prod_{n >= 1} (1 - q^n) * (1 + q^n)^2)^2 = 1/(Prod_{n >= 1} (1 - q^(2*n)) * (1 + q^n ))^2 = Prod_{n >= 1} (1 - q^(2n-1))^2 / (1 - q^(2n))^2. For the last equality, giving the g.f. of the name, see the Euler identity, mentioned in a Jul 05 2016 comment of A010054. (End)
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(5/2)*n^(5/4)). - Vaclav Kotesovec, Jul 05 2016

A296045 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 981, 4222, 18351, 80320, 353453, 1562364, 6932185, 30856541, 137725710, 616190583, 2762605791, 12408541299, 55825435656, 251523510045, 1134741006825, 5125453110196, 23175983361270, 104899547541255, 475228898015025, 2154737528486881, 9777332125043577
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[(2 (-x)^(1/8)/EllipticTheta[2, 0, Sqrt[-x]])^n, {x, 0, n}], {n, 0, 26}]
    Table[(-1)^n * 2^n * SeriesCoefficient[1/(QPochhammer[-1, x]*QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 07 2020 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 4/Sqrt[Pi*(77/2 - 4*s*(-r*s)^(7/8) * Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-r*s]])]} /. FindRoot[{s == (2*(-r*s)^(1/8))/EllipticTheta[2, 0, Sqrt[-r*s]], 7*I*r + 2*(-r*s)^(7/8)*Sqrt[r*s] * Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-r*s]] == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 - x^(4*k)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.62579056836776492108784045382518984897... (see A192540) and c = 0.255113338880004277664416308115912337... - Vaclav Kotesovec, Dec 05 2017

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017
Showing 1-4 of 4 results.