cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A274906 Largest prime factor of 4^n - 1.

Original entry on oeis.org

3, 5, 7, 17, 31, 13, 127, 257, 73, 41, 683, 241, 8191, 127, 331, 65537, 131071, 109, 524287, 61681, 5419, 2113, 2796203, 673, 4051, 8191, 262657, 15790321, 3033169, 1321, 2147483647, 6700417, 599479, 131071, 122921, 38737, 616318177, 525313, 22366891
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^7 - 1 = 16383 = 3*43*127, so a(7) = 127
		

Crossrefs

Second bisection of A005420. - Michel Marcus, Jul 13 2016
Cf. largest prime factor of k^n-1: A005420 (k=2), A074477 (k=3), this sequence (k=4), A074479 (k=5), A274907 (k=6), A074249 (k=7), A274908 (k=8), A274909 (k=9), A005422 (k=10), A274910 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[4^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024036(n)). - Michel Marcus, Jul 11 2016
a(n) = max(A002587(n),A005420(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(603) in b-file from Amiram Eldar, Feb 08 2020
a(604)-a(1128) in b-file from Max Alekseyev, Jul 25 2023, Mar 15 2025

A366681 Number of distinct prime divisors of 11^n - 1.

Original entry on oeis.org

2, 3, 4, 4, 3, 6, 4, 5, 5, 5, 4, 9, 4, 6, 6, 7, 3, 8, 3, 7, 9, 9, 5, 12, 6, 8, 6, 10, 4, 11, 5, 9, 9, 7, 7, 12, 6, 8, 12, 10, 9, 13, 4, 12, 8, 10, 5, 18, 7, 10, 9, 10, 6, 11, 9, 15, 7, 8, 5, 16, 5, 10, 15, 12, 7, 19, 6, 12, 10, 15, 7, 18, 3, 9, 13, 11, 8, 20
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(11^n - 1), ", "))

Formula

a(n) = omega(11^n-1) = A001221(A024127(n)).

A379644 Smallest primitive prime factor of 11^n-1.

Original entry on oeis.org

2, 3, 7, 61, 3221, 37, 43, 7321, 1772893, 13421, 15797, 13, 1093, 1623931, 195019441, 17, 50544702849929377, 590077, 6115909044841454629, 212601841, 1723, 23, 829, 10657, 3001, 53, 5559917315850179173, 29, 523, 31, 50159, 51329, 661, 71707, 211, 3138426605161
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has undecimal period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274910.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(11^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A218359 Minimal order of degree-n irreducible polynomials over GF(11).

Original entry on oeis.org

1, 3, 7, 16, 25, 9, 43, 32, 1772893, 75, 15797, 13, 1093, 129, 175, 17, 50544702849929377, 27, 6115909044841454629, 400, 49, 23, 829, 224, 125, 53, 5559917315850179173, 29, 523, 31, 50159, 128, 661, 71707, 211, 351, 2591, 191, 79, 41, 83, 147, 1416258521793067
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 11^n.

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..42);
  • Mathematica
    M[n_] := M[n] = Divisors[11^n - 1]~Complement~U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
    a[n_] := Min[M[n]];
    Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(11^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A218336(n,1) = A213224(n,5).

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).
Showing 1-5 of 5 results.