cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.

Original entry on oeis.org

3, 6, 5, 12, 15, 10, 21, 24, 27, 30, 33, 20, 39, 42, 7, 48, 51, 54, 57, 60, 35, 66, 69, 40, 75, 78, 45, 84, 87, 14, 93, 96, 55, 102, 105, 108, 111, 114, 65, 120, 123, 70, 129, 132, 135, 138, 141, 80, 147, 150, 85, 156, 159, 90, 165, 168, 95, 174, 177, 28, 183, 186, 189
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A permutation of A028983.
A007417 (which has asymptotic density 3/4) lists index n such that a(n) = 3n. The sequence maps the terms of A007417 1:1 onto A145204\{0}, defining a bijection between them.
Similarly, bijections are defined from the odd numbers (A005408) to the nonsquare odd numbers (A088828), from the positive even numbers (A299174) to A088829, from A003159 to the nonsquares in A003159, and from A325424 to the nonsquares in A036668. The latter two bijections are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.

Examples

			84 = 21*4 has squarefree part 21 (and square part 4). The smallest odd prime absent from 21 = 3*7 is 5 and the product of all smaller odd primes is 3. So a(84) = 84*5/3 = 140.
		

Crossrefs

Permutation of A028983.
Row 3, and therefore column 3, of A331590. Cf. A334747 (row 2).
A007913, A034386, A225546, A284723 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A003961, A019565, A070826; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016051, A145204\{0}, A329575.
Bijections are defined that relate to A003159, A005408, A007417, A036668, A088828, A088829, A299174, A325424.

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=3, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * p / (A034386(p-1)/2), where p = A284723(A007913(n)).
a(n) = A334747(A334747(n)).
a(n) = A331590(3, n) = A225546(4 * A225546(n)).
a(2*n) = 2 * a(n).
a(A019565(n)) = A019565(n+2).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = A003961(A334747(n)).
a(A070826(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 2.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A007417(n)) = A145204(n+1) = 3 * A007417(n).

A355001 Smallest common prime factor of A003961(n) and A276086(n), or 1 if they are coprime, where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

Original entry on oeis.org

1, 3, 1, 3, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 7, 1, 3, 1, 3, 7, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 7, 3, 5, 3, 1, 7, 1, 3, 1, 3, 7, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 3, 1, 5, 7, 3, 5, 3, 1, 7, 1, 3, 1, 3, 7, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2022

Keywords

Crossrefs

Cf. A003961, A020639, A276086, A284723 (even bisection), A355442, A355820, A355821 (positions of 1's).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    A355001(n) = A020639(A355442(n));

Formula

a(n) = A020639(A355442(n)) = A020639(gcd(A003961(n), A276086(n))).

A284721 Smallest odd prime that is relatively prime to 2n+1.

Original entry on oeis.org

3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2017

Keywords

Comments

More than the usual number of terms are shown in order to distinguish this from A239278.
a(n) = smallest odd prime missing from rad(2*n+1).
If rad(2m+1) = rad(2n+1), a(m) = a(n) (cf. A007947). - Bob Selcoe, Apr 04 2017

Crossrefs

Similar to but different from A239278.

Programs

  • Maple
    f:= proc(n) local p;
     p:= 2;
     do
       p:= nextprime(p);
       if igcd(p,2*n+1)=1 then return p fi
     od
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 09 2024
  • Mathematica
    a[n_] := Module[{p = 3}, While[Divisible[2*n + 1, p], p = NextPrime[p]]; p]; Array[a, 100, 0] (* Amiram Eldar, Dec 09 2023 *)
  • PARI
    a(n) = my(p=3); while(gcd(2*n+1, p) != 1, p=nextprime(p+1)); p; \\ Michel Marcus, Apr 04 2017

Formula

a(n) = 3 unless n == 1 (mod 3).
For all n >= 2, a(n) < 3*log(2*n+1). Also, for all n >= 1, a(n) < 5*log(2*n+1). [Upper bound corrected by N. J. A. Sloane, Apr 15 2017. Thanks to Bob Selcoe for pointing out that the old bound failed at n=1.]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * Sum_{k>=2} (prime(k) * (1/prime(k-1)# - 1/prime(k)#)) = 3.84010195463226942418..., where prime(k)# = A002110(k). - Amiram Eldar, Dec 09 2023

A371531 a(n) is the multiplicative order of A053669(n) modulo n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 3, 2, 6, 4, 10, 2, 12, 6, 4, 4, 8, 6, 18, 4, 6, 5, 11, 2, 20, 3, 18, 6, 28, 4, 5, 8, 10, 16, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, 23, 4, 21, 20, 8, 6, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 35, 6, 9, 18, 20
Offset: 1

Views

Author

DarĂ­o Clavijo, Mar 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2}, While[Divisible[n, p], p = NextPrime[p]]; MultiplicativeOrder[p, n]]; Array[a, 75] (* Amiram Eldar, Mar 26 2024 *)
  • PARI
    f(n) = forprime(p=2, , if(n%p, return(p))); \\ A053669
    a(n) = znorder(Mod(f(n), n)); \\ Michel Marcus, Mar 26 2024
  • Python
    from sympy.ntheory.residue_ntheory import n_order
    from sympy import nextprime
    def a(n):
      if n == 1: return 1
      if n & 1 == 1: return n_order(2, n)
      p = 2
      while n % p == 0:
        p = nextprime(p)
      return n_order(p, n)
    print([a(n) for n in range(1, 76)])
    

Formula

a(2k+1) = A002326(k) for k >= 1.
a(2k) = ord(A284723(k), 2k).
Showing 1-4 of 4 results.