A004075 Number of Skolem sequences of order n.
1, 0, 0, 6, 10, 0, 0, 504, 2656, 0, 0, 455936, 3040560, 0, 0, 1400156768, 12248982496, 0, 0, 11435578798976, 123564928167168, 0, 0, 204776117691241344, 2634563519776965376, 0, 0, 7064747252076429464064, 105435171495207196553472, 0, 0
Offset: 1
References
- CRC Handbook of Combinatorial Designs, 1996, p. 460.
Links
- Ali Assarpour, Amotz Bar-Noy, Ou Liuo, Counting the Number of Langford Skolem Pairings, arXiv:1507.00315 [cs.DM], 2015.
- S. Burrill and L. Yen, Constructing Skolem sequences via generating trees, arXiv preprint arXiv:1301.6424 [math.CO], 2013.
- J. E. Miller, Langford's Problem
- G. Nordh, Perfect Skolem sequences, arXiv:math/0506155 [math.CO], 2005.
Programs
-
Mathematica
(* Program not suitable to compute a large number of terms. *) iter[n_] := Sequence @@ Table[{x[i], {-1, 1}}, {i, 1, 2n}]; a[n_] := 1/2^(2n) Sum[Product[x[i], {i, 1, 2n}] Product[Sum[x[k] x[k+i], {k, 1, 2n-i}], {i, 1, n}], iter[n] // Evaluate]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Sep 29 2018, from formula in Assarpour et al. *)
Formula
For n > 1, a(n) = A059106(n)*2 because A059106 ignores reflected solutions. - Martin Fuller, Mar 08 2007
Extensions
More terms (via A059106) from Martin Fuller, Mar 08 2007
Extended using results from the Assarpour et al. (2015) paper by N. J. A. Sloane, Feb 22 2016 at the suggestion of William Rex Marshall
a(28)-a(31) from Assarpour et al. (2015), added by Max Alekseyev, Sep 24 2023
Comments