cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193574 Smallest divisor of sigma(n) that does not divide n.

Original entry on oeis.org

3, 2, 7, 2, 4, 2, 3, 13, 3, 2, 7, 2, 3, 2, 31, 2, 13, 2, 3, 2, 3, 2, 5, 31, 3, 2, 8, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 31, 3, 3, 2, 7, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 127, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 4, 2, 3
Offset: 2

Views

Author

Keywords

Comments

a(n) = 2 iff n is an odd number that is not a perfect square.
From Hartmut F. W. Hoft, May 05 2017: (Start)
(1) Every a(n) > n is a prime: Because of the minimality of a(n), a(n) = u*v with gcd(u,v)=1 leads to the contradiction (u*v)|n. Similarly, a(n)=p^k with p prime an k>1 leads to the contradiction (p^k-1)/(p-1) | n.
(2) n=p^(2*k), k>=1 and 2*k+1 prime, when a(n) = sigma(n) for n>2: Because n having two distinct prime factors implies sigma(n) composite, and if n is an odd power of a prime then 2|sigma(n). Finally, if 2*k+1=u*v with u,v > 1 then sigma(p^(u-1)) divides sigma(p^(2*k)), but not p^(2k), for any prime p, contradicting minimality of a(n). For example, no number sigma(p^8) for any prime p is in the sequence.
(3) The converse of (2) is false since, e.g. sigma(7^2) = 3*19 so that a(7^2) = 3, and sigma(2^10) = 23*89 so that a(2^10) = 23.
(4) Conjecture: a(n) > n implies a(n) = sigma(n); tested through n = 20000000.
(5) Subsequences are: A053183 (sigma(p^2) is prime for prime p), A190527 (sigma(p^4) is prime for prime p), A194257 (sigma(p^6) is prime for prime p), A286301 (sigma(p^10) is prime for prime p)
(6) Subsequences are: A000668 (primes of form 2^p-1), A076481 (primes of form (3^p-1)/2), A086122 (primes of form (5^p-1)/4), A102170 (primes of form (7^p-1)/6), all when p is prime.
(End)
Up to n = 10^6, there are 89 distinct elements. For those n, a(n) is prime. If it's not, it's a power of 2, a power of 3 or a perfect square <= 121. - David A. Corneth, May 10 2017

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a193574 n = head [d | d <- [1..sigma] \\ nDivisors, mod sigma d == 0]
       where nDivisors = a027750_row n
             sigma = sum nDivisors
    -- Reinhard Zumkeller, May 20 2015, Aug 28 2011
  • Mathematica
    a193574[n_] := First[Select[Divisors[DivisorSigma[1, n]], Mod[n, #]!=0&]]
    Map[a193574, Range[2, 80]] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
  • PARI
    a(n)=local(ds);ds=divisors(sigma(n));for(k=2,#ds,if(n%ds[k],return(ds[k])))
    

A198244 Primes of the form k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 where k is nonprime.

Original entry on oeis.org

11, 10778947368421, 17513875027111, 610851724137931, 614910264406779661, 22390512687494871811, 22793803793211153712637, 79905927161140977116221, 184251916941751188170917, 319465039747605973452001, 1311848376806967295019263, 1918542715220370688851293
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2012

Keywords

Comments

Subsequence of A060885.
From Bernard Schott, Nov 01 2019: (Start)
These are the primes associated with the terms k of A308238.
A162861 = A286301 Union {this sequence}.
The numbers of this sequence R_11 = 11111111111_k with k > 1 are Brazilian primes, so belong to A085104. (End)

Examples

			10778947368421 is in the sequence since 10778947368421 = 20^10 + 20^9 + 20^8 + 20^7 + 20^6 + 20^5 + 20^4 + 20^3 + 20^2 + 20 + 1, 20 is not prime, and 10778947368421 is prime.
		

Crossrefs

Similar to A185632 (k^2+ ...), A193366 (k^4+ ...), A194194 (k^6+ ...).

Programs

  • Magma
    [a: n in [0..500] | not IsPrime(n) and IsPrime(a) where a is (n^10+n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1)]; // Vincenzo Librandi, Nov 09 2014
    
  • Maple
    f:= proc(n)
    local p,j;
    if isprime(n) then return NULL fi;
    p:= add(n^j,j=0..10);
    if isprime(p) then p else NULL fi
    end proc:
    map(f, [$1..1000]); # Robert Israel, Nov 19 2014
  • PARI
    forcomposite(n=0,10^3,my(t=sum(k=0,10,n^k));if(isprime(t),print1(t,", "))); \\ Joerg Arndt, Nov 10 2014
  • Python
    from sympy import isprime
    A198244_list, m = [], [3628800, -15966720, 28828800, -27442800, 14707440, -4379760, 665808, -42240, 682, 0, 1]
    for n in range(1,10**4):
        for i in range(10):
            m[i+1]+= m[i]
        if not isprime(n) and isprime(m[-1]):
            A198244_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

{A060885(A018252(n)) which are in A000040}.

Extensions

a(5)-a(6) from Robert G. Wilson v, Dec 21 2012
a(7) from Michael B. Porter, Dec 27 2012
Corrected terms a(6)-a(7) and added terms by Chai Wah Wu, Nov 09 2014

A308238 Nonprimes k such that k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 20, 21, 30, 60, 86, 172, 195, 212, 224, 258, 268, 272, 319, 339, 355, 365, 366, 390, 398, 414, 480, 504, 534, 539, 543, 567, 592, 626, 654, 735, 756, 766, 770, 778, 806, 812, 874, 943, 973, 1003, 1036, 1040, 1065, 1194, 1210, 1239, 1243, 1264, 1309, 1311
Offset: 1

Views

Author

Bernard Schott, May 16 2019

Keywords

Comments

A240693 Union {this sequence} = A162862.
The corresponding prime numbers, (11111111111)_k, are Brazilian primes and belong to A085104 and A285017 (except 11).

Examples

			(11111111111)_20 = (20^11 - 1)/19 = 10778947368421 is prime, thus 20 is a term.
		

Crossrefs

Intersection of A064108 and A285017.
Similar to A182253 for k^2+k+1, A286094 for k^4+k^3+k^2+k+1, A288939 for k^6+k^5+k^4+k^3+k^2+k+1.

Programs

  • Magma
    [1] cat [n:n in [2..1500]|not IsPrime(n) and IsPrime(Floor((n^11-1)/(n-1)))]; // Marius A. Burtea, May 16 2019
    
  • Maple
    filter:= n -> not isprime(n) and isprime((n^11-1)/(n-1)) : select(filter, [$2..5000]);
  • Mathematica
    Select[Range@ 1320, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 10]]] &] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    isok(n) = !isprime(n) && isprime(polcyclo(11, n)); \\ Michel Marcus, May 19 2019
Showing 1-3 of 3 results.