cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A257993 Least gap in the partition having Heinz number n; index of the least prime not dividing n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The "least gap" of a partition is the least positive integer that is not a part of the partition. For example, the least gap of the partition [7,4,2,2,1] is 3.
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
Sum of least gaps of all partitions of m = A022567(m).
From Antti Karttunen, Aug 22 2016: (Start)
Index of the least prime not dividing n. (After a formula given by Heinz.)
Least k such that A002110(k) does not divide n.
One more than the number of trailing zeros in primorial base representation of n, A049345.
(End)
The least gap is also called the mex (minimal excludant) of the partition. - Gus Wiseman, Apr 20 2021

Examples

			a(18) = 3 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having least gap equal to 3.
		

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
  • Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

Crossrefs

Positions of 1's are A005408.
Positions of 2's are A047235.
The number of gaps is A079067.
The version for crank is A257989.
The triangle counting partitions by this statistic is A264401.
One more than A276084.
The version for greatest difference is A286469 or A286470.
A maximal instead of minimal version is A339662.
Positions of even terms are A342050.
Positions of odd terms are A342051.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339737 counts partitions by sum and greatest gap.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: for q while member(q, B(n)) = true do  end do: q end proc: seq(a(n), n = 1 .. 150);
    # second Maple program:
    a:= n-> `if`(n=1, 1, (s-> min({$1..(max(s)+1)} minus s))(
            {map(x-> numtheory[pi](x[1]), ifactors(n)[2])[]})):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 09 2016
    # faster:
    A257993 := proc(n) local p, c; c := 1; p := 2;
    while n mod p = 0 do p := nextprime(p); c := c + 1 od: c end:
    seq(A257993(n), n=1..100); # Peter Luschny, Jun 04 2017
  • Mathematica
    A053669[n_] := For[p = 2, True, p = NextPrime[p], If[CoprimeQ[p, n], Return[p]]]; a[n_] := PrimePi[A053669[n]]; Array[a, 100] (* Jean-François Alcover, Nov 28 2016 *)
    Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; k, {n, 100}] (* Michael De Vlieger, Jun 22 2017 *)
  • PARI
    a(n) = forprime(p=2,, if (n % p, return(primepi(p)))); \\ Michel Marcus, Jun 22 2017
  • Python
    from sympy import nextprime, primepi
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def a(n): return primepi(a053669(n)) # Indranil Ghosh, May 12 2017
    
  • Scheme
    (define (A257993 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (d (modulo n p))) (if (not (zero? d)) i (loop (/ (- n d) p) (+ 1 i))))))
    ;; Antti Karttunen, Aug 22 2016
    

Formula

a(n) = A000720(A053669(n)). - Alois P. Heinz, May 18 2015
From Antti Karttunen, Aug 22-30 2016: (Start)
a(n) = 1 + A276084(n).
a(n) = A055396(A276086(n)).
A276152(n) = A002110(a(n)).
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} 1/A002110(k) = 1.705230... (1 + A064648). - Amiram Eldar, Jul 23 2022
a(n) << log n/log log n. - Charles R Greathouse IV, Dec 03 2022

Extensions

A simpler description added to the name by Antti Karttunen, Aug 22 2016

A355536 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime, row n is empty.

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 2, 2, 4, 0, 0, 1, 0, 5, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 7, 4, 0, 0, 2, 1, 2, 0, 4, 0, 1, 8, 0, 0, 0, 1, 0, 2, 0, 5, 0, 5, 1, 0, 0, 2, 0, 0, 3, 6, 9, 0, 1, 1, 10, 0, 2, 0, 0, 0, 0, 0, 3, 1, 3, 0, 6
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       .
   3:    (2)       .
   4:   (1,1)      0
   5:    (3)       .
   6:   (1,2)      1
   7:    (4)       .
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       .
  12:  (1,1,2)    0 1
  13:    (6)       .
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
		

Crossrefs

Row-lengths are A001222 minus one.
The prime indices are A112798, sum A056239.
Row-sums are A243055.
Constant rows have indices A325328.
The Heinz numbers of the rows plus one are A325352.
Strict rows have indices A325368.
Row minima are A355524.
Row maxima are A286470, also A355526.
An adjusted version is A358169, reverse A355534.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[primeMS[n]],{n,2,100}]

A287170 a(n) = number of runs of consecutive prime numbers among the prime divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Jun 04 2017

Keywords

Comments

a(n) = 0 iff n = 1.
a(n) = 1 iff n belongs to A073491.
a(p) = 1 for any prime p.
a(A002110(n)) = 1 for any n > 0.
a(n!) = 1 for any n > 1.
a(A066205(n)) = n for any n > 0.
a(n) = a(A007947(n)) for any n > 0.
a(n) = a(A003961(n)) for any n > 0.
a(n*m) <= a(n) + a(m) for any n > 0 and m > 0.
Each number n can be uniquely represented as a product of a(n) distinct terms from A073491; this representation is minimal relative to the number of terms.

Examples

			See illustration of the first terms in the Links section.
The prime indices of 18564 are {1,1,2,4,6,7}, which separate into maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3; this corresponds to the ordered factorization 18564 = 12 * 7 * 221. - _Gus Wiseman_, Sep 03 2022
		

Crossrefs

Positions of first appearances are A066205.
These are the row-lengths of A356226 and A356234. Other statistics are:
- length: A287170 (this sequence)
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356603 or A356232 (sorted)
A001222 counts prime factors, distinct A001221.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    Table[Length[Select[First/@If[n==1,{},FactorInteger[n]],!Divisible[n,NextPrime[#]]&]],{n,30}] (* Gus Wiseman, Sep 03 2022 *)
  • PARI
    a(n) = my (f=factor(n)); if (#f~==0, return (0), return (#f~ - sum(i=1, #f~-1, if (primepi(f[i,1])+1 == primepi(f[i+1,1]), 1, 0))))
    
  • Python
    from sympy import factorint, primepi
    def a087207(n):
        f=factorint(n)
        return sum([2**primepi(i - 1) for i in f])
    def a069010(n): return sum(1 for d in bin(n)[2:].split('0') if len(d)) # this function from Chai Wah Wu
    def a(n): return a069010(a087207(n)) # Indranil Ghosh, Jun 06 2017

Formula

a(n) = A069010(A087207(n))

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
		

Crossrefs

Row sums are A001222.
Singleton row positions are A073491, complement A073492.
Length-2,3,4 row positions are A073493-A073495.
Row lengths are A287170, firsts A066205.
Row minima are A356227.
Row maxima are A356228.
Bisected run-lengths are A356229.
Standard composition numbers of rows are A356230.
Heinz numbers of rows are A356231.
Positions of first appearances are A356232.
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A286469 a(n) = maximum of {the index of least prime dividing n} and {the maximal gap between indices of the successive primes in the prime factorization of n}.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 2, 1, 7, 1, 8, 2, 2, 4, 9, 1, 3, 5, 2, 3, 10, 1, 11, 1, 3, 6, 3, 1, 12, 7, 4, 2, 13, 2, 14, 4, 2, 8, 15, 1, 4, 2, 5, 5, 16, 1, 3, 3, 6, 9, 17, 1, 18, 10, 2, 1, 3, 3, 19, 6, 7, 2, 20, 1, 21, 11, 2, 7, 4, 4, 22, 2, 2, 12, 23, 2, 4, 13, 8, 4, 24, 1, 4, 8, 9, 14, 5, 1, 25, 3, 3, 2, 26, 5, 27, 5, 2, 15, 28, 1, 29, 2, 10, 3
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Comments

This gives the maximal gap between the indices of successive prime factors p_i <= p_j <= ... <= p_k of n = p_i * p_j * ... * p_k when the index of the least prime factor p_i (A055396) is considered as the initial gap from the "level zero".

Crossrefs

Programs

  • Python
    from sympy import primepi, isprime, primefactors, divisors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def x(n): return 1 if n==1 else divisors(n)[-2]
    def a286470(n): return 0 if n==1 or len(primefactors(n))==1 else max(a055396(x(n)) - a055396(n), a286470(x(n)))
    def a(n): return max(a055396(n), a286470(n)) # Indranil Ghosh, May 17 2017
  • Scheme
    (define (A286469 n) (max (A055396 n) (A286470 n)))
    

Formula

a(n) = max(A055396(n), A286470(n)).
a(n) = A051903(A122111(n)).
For all i, j: A286621(i) = A286621(j) => a(i) = a(j). [Because of the above formula.]

Extensions

Definition corrected May 17 2017

A356230 The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 8, 1, 4, 1, 5, 3, 3, 1, 8, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 2, 8, 1, 3, 3, 9, 1, 5, 1, 5, 4, 3, 1, 16, 2, 6, 3, 5, 1, 8, 3, 9, 3, 3, 1, 8, 1, 3, 5, 32, 3, 5, 1, 5, 3, 6, 1, 16, 1, 3, 4, 5, 2, 5, 1, 17, 8, 3, 1, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), which is the 38th composition in standard order, so a(18564) = 38.
		

Crossrefs

Numbers grouped by number of gaps in prime indices are A073491-A073495.
These are the standard composition numbers of rows of A356226.
Using Heinz numbers instead of standard compositions gives A356231.
Positions of first appearances are A356603, sorted A356232.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A066099 lists compositions in standard order.
A132747 counts non-isolated divisors, complement A132881.
A333627 represents the run-lengths of standard compositions.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

A000120(a(n)) = A287170(n).
A333766(a(n)) = A356228(n).
A333768(a(n)) = A356227(n).

A342050 Numbers k which have an odd number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 30, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 60, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 90, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 120, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 150, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 180, 182, 184, 188, 190, 194, 196, 200, 202, 206, 208, 212
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is odd.
All the terms are even since odd numbers have 0 trailing zeros, and 0 is not odd.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * Sum_{k=1..m}(-1)^k/A002110(k) = 1, 2, 11, 76, 837, 10880, 184961, ...
The asymptotic density of this sequence is Sum_{k>=1} (-1)^(k+1)/A002110(k) = 0.362306... (A132120).
Also Heinz numbers of partitions with even least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021
Numbers k such that A000720(A053669(k)) is even. Differences from the related A353531 seem to be terms that are multiples of 210, but not all of them, for example primorial 30030 (= 143*210) is in neither sequence. Consider also A038698. - Antti Karttunen, Apr 25 2022

Examples

			2 is a term since A049345(2) = 10 has 1 trailing zero.
4 is a term since A049345(2) = 20 has 1 trailing zero.
30 is a term since A049345(2) = 1000 has 3 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}             46: {1,9}             90: {1,2,2,3}
      4: {1,1}           50: {1,3,3}           92: {1,1,9}
      8: {1,1,1}         52: {1,1,6}           94: {1,15}
     10: {1,3}           56: {1,1,1,4}         98: {1,4,4}
     14: {1,4}           58: {1,10}           100: {1,1,3,3}
     16: {1,1,1,1}       60: {1,1,2,3}        104: {1,1,1,6}
     20: {1,1,3}         62: {1,11}           106: {1,16}
     22: {1,5}           64: {1,1,1,1,1,1}    110: {1,3,5}
     26: {1,6}           68: {1,1,7}          112: {1,1,1,1,4}
     28: {1,1,4}         70: {1,3,4}          116: {1,1,10}
     30: {1,2,3}         74: {1,12}           118: {1,17}
     32: {1,1,1,1,1}     76: {1,1,8}          120: {1,1,1,2,3}
     34: {1,7}           80: {1,1,1,1,3}      122: {1,18}
     38: {1,8}           82: {1,13}           124: {1,1,11}
     40: {1,1,1,3}       86: {1,14}           128: {1,1,1,1,1,1,1}
     44: {1,1,5}         88: {1,1,1,5}        130: {1,3,6}
(End)
		

Crossrefs

Complement of A342051.
A099800 is subsequence.
Analogous sequences: A001950 (Zeckendorf representation), A036554 (binary), A145204 (ternary), A217319 (base 4), A232745 (factorial base).
The version for reversed binary expansion is A079523.
Positions of even terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339662 gives greatest gap in prime indices.
Differs from A353531 for the first time at n=77, where a(77) = 212, as this sequence misses A353531(77) = 210.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], OddQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],EvenQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A353525(n) = { for(i=1,oo,if(n%prime(i),return((i+1)%2))); }
    isA342050(n) = A353525(n);
    k=0; n=0; while(k<77, n++; if(isA342050(n), k++; print1(n,", "))); \\ Antti Karttunen, Apr 25 2022

Extensions

More terms added (to differentiate from A353531) by Antti Karttunen, Apr 25 2022

A355534 Irregular triangle read by rows where row n lists the augmented differences of the reversed prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 5, 2, 1, 1, 6, 4, 1, 2, 2, 1, 1, 1, 1, 7, 1, 2, 1, 8, 3, 1, 1, 3, 2, 5, 1, 9, 2, 1, 1, 1, 1, 3, 6, 1, 1, 1, 2, 4, 1, 1, 10, 2, 2, 1, 11, 1, 1, 1, 1, 1, 4, 2, 7, 1, 2, 3, 1, 2, 1, 1, 12, 8, 1, 5, 2, 3, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 2 1
   7: 4
   8: 1 1 1
   9: 1 2
  10: 3 1
  11: 5
  12: 2 1 1
  13: 6
  14: 4 1
  15: 2 2
  16: 1 1 1 1
For example, the reversed prime indices of 825 are (5,3,3,2), which have augmented differences (3,1,2,2).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row-lengths are A001222.
Row-sums are A252464
Other similar triangles are A287352, A091602.
Constant rows have indices A307824.
The Heinz numbers of the rows are A325351.
Strict rows have indices A325366.
Row minima are A355531, non-augmented A355524, also A355525.
Row maxima are A355535, non-augmented A286470, also A355526.
The non-augmented version is A355536, also A355533.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A342051 Numbers k which have an even number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is even.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * (1 - Sum_{k=1..m}(-1)^k/A002110(k)) = 1, 4, 19, 134, 1473, 19150, 325549 ...
The asymptotic density of this sequence is Sum_{k>=0} (-1)^k/A002110(k) = 0.637693... = 1 - A132120.
Also Heinz numbers of partitions with odd least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021

Examples

			1 is a term since A049345(1) = 1 has 0 trailing zero.
6 is a term since A049345(6) = 100 has 2 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
     1: {}           25: {3,3}          51: {2,7}
     3: {2}          27: {2,2,2}        53: {16}
     5: {3}          29: {10}           54: {1,2,2,2}
     6: {1,2}        31: {11}           55: {3,5}
     7: {4}          33: {2,5}          57: {2,8}
     9: {2,2}        35: {3,4}          59: {17}
    11: {5}          36: {1,1,2,2}      61: {18}
    12: {1,1,2}      37: {12}           63: {2,2,4}
    13: {6}          39: {2,6}          65: {3,6}
    15: {2,3}        41: {13}           66: {1,2,5}
    17: {7}          42: {1,2,4}        67: {19}
    18: {1,2,2}      43: {14}           69: {2,9}
    19: {8}          45: {2,2,3}        71: {20}
    21: {2,4}        47: {15}           72: {1,1,1,2,2}
    23: {9}          48: {1,1,1,1,2}    73: {21}
    24: {1,1,1,2}    49: {4,4}          75: {2,3,3}
(End)
		

Crossrefs

Complement of A342050.
A099788 is subsequence.
Analogous sequences: A000201 (Zeckendorf representation), A003159 (binary), A007417 (ternary), A232744 (factorial base).
The version for reversed binary expansion is A121539.
Positions of odd terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A339662 gives greatest gap in prime indices.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],OddQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)

A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 160, 200, 220, 250, 256, 320, 400, 440, 500, 512, 550, 640, 800, 880, 1000, 1024, 1100, 1210, 1250, 1280, 1600, 1760, 1870, 2000, 2048, 2200, 2420, 2500, 2560, 2750, 3200, 3520, 3740, 4000, 4096, 4400
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positions of first appearances of rows in A356226.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
     10: {1,3}
     16: {1,1,1,1}
     20: {1,1,3}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     50: {1,3,3}
     64: {1,1,1,1,1,1}
     80: {1,1,1,1,3}
    100: {1,1,3,3}
    110: {1,3,5}
    128: {1,1,1,1,1,1,1}
    160: {1,1,1,1,1,3}
    200: {1,1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    256: {1,1,1,1,1,1,1,1}
    320: {1,1,1,1,1,1,3}
    400: {1,1,1,1,3,3}
		

Crossrefs

The partitions with these Heinz numbers are counted by A053251.
This is the odd restriction of A055932.
A subset of A066208 (numbers with all odd prime indices).
This is the sorted version of A356603.
These are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232 (this sequence)
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[1000],normQ[(primeMS[#]+1)/2]&]
Showing 1-10 of 47 results. Next