cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A268193 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of partitions of n which have k distinct parts i such that i+1 is also a part.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 3, 8, 2, 1, 8, 6, 1, 13, 7, 2, 15, 11, 4, 22, 15, 4, 1, 24, 24, 7, 1, 37, 26, 12, 2, 40, 42, 16, 3, 57, 50, 22, 6, 64, 72, 33, 6, 1, 89, 84, 46, 11, 1, 98, 122, 60, 15, 2, 135, 141, 82, 24, 3, 149, 198, 106, 32, 5, 199, 231, 144, 45, 8, 224, 309, 187, 61, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 13 2016

Keywords

Comments

T(n,k) = number of partitions of n having k singleton parts other than the largest part. Example: T(5,1) = 3 because we have [4,1'], [3,2'], [2,2,1'] (the counted singletons are marked). These partitions are connected by conjugation to those in the definition.
From Gus Wiseman, Jul 10 2025: (Start)
Also the number of integer partitions of n with k maximal subsequences of consecutive parts not decreasing by 1 (anti-runs). For example, row n = 8 counts partitions with the following anti-runs:
((8)) ((3,3),(2)) ((3),(2,2),(1))
((4,4)) ((4),(3,1)) ((3),(2),(1,1,1))
((5,3)) ((5,2),(1))
((6,2)) ((4,2),(1,1))
((7,1)) ((2,2,2),(1,1))
((4,2,2)) ((2,2),(1,1,1,1))
((6,1,1)) ((2),(1,1,1,1,1,1))
((2,2,2,2))
((3,3,1,1))
((5,1,1,1))
((4,1,1,1,1))
((3,1,1,1,1,1))
((1,1,1,1,1,1,1,1))
(End)

Examples

			T(5,1) = 3 because we have [3,2], [2,2,1], and [2,1,1,1].
T(9,2) = 4 because we have [3,2',1,1,1,1'], [3,2,2',1,1'], [3,3,2',1'], and [4,3',2'] (the i's are marked).
Triangle starts:
  1;
  2;
  2,1;
  4,1;
  4,3;
  8,2,1;
  8,6,1;
From _Gus Wiseman_, Jul 11 2025: (Start)
Row n = 8 counts the following partitions by number of singleton parts other than the largest part:
  (8)                (5,3)        (4,3,1)
  (4,4)              (6,2)        (5,2,1)
  (4,2,2)            (7,1)
  (6,1,1)            (3,3,2)
  (2,2,2,2)          (3,2,2,1)
  (3,3,1,1)          (4,2,1,1)
  (5,1,1,1)          (3,2,1,1,1)
  (2,2,2,1,1)
  (4,1,1,1,1)
  (2,2,1,1,1,1)
  (3,1,1,1,1,1)
  (2,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1)
(End)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
For distinct parts instead of anti-runs we have A116608.
Column k = 1 is A116931.
For runs instead of anti-runs we have A384881.
The strict case is A384905.
The corresponding rank statistic is A356228, non-strict version A384906.
The proper case is A385814, runs A385815.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Maple
    g := add(x^j*mul(1+t*x^i+x^(2*i)/(1-x^i), i = 1 .. j-1)/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 27)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n to 25 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0)*
          `if`(t and j=1, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, false)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 13 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, t || j > 0]*If[t && j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, False]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}] (* Delete zeros for A268193. Gus Wiseman, Jul 10 2025 *)

Formula

T(n,0) = A116931(n).
Sum_{k>=1} T(n, k) = A000041(n) (the partition numbers).
Sum_{k>=1} k*T(n,k) = A024786(n-1).
G.f.: G(t,x) = Sum_{j>=1} ((x^j/(1-x^j))*Product_{i=1..j-1} (1 + tx^i + x^{2i}/(1-x^i))).

A356224 Number of divisors of n whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 4, 1, 6, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 7, 1, 3, 1, 3, 1, 2, 1, 10, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 5, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) gapless divisors of n = 1..24:
  1  2  1  4  1  6  1  8  1  2  1  12  1  2  1  16  1  18  1  4  1  2  1  24
     1     2     2     4     1     6      1     8      6      2     1     12
           1     1     2           4            4      2      1           8
                       1           2            2      1                  6
                                   1            1                         4
                                                                          2
                                                                          1
For example, the divisors of 12 are {1,2,3,4,6,12}, of which {1,2,4,6,12} belong to A055932, so a(12) = 5.
		

Crossrefs

These divisors belong to A055932, a subset of A073491 (complement A073492).
The complement is A356225.
A001223 lists the prime gaps.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    Table[Length[Select[Divisors[n],normQ[primeMS[#]]&]],{n,100}]

A356233 Number of integer factorizations of n into gapless numbers (A066311).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 5, 1, 4, 1, 2, 1, 1, 1, 7, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 2, 9, 1, 1, 1, 3, 1, 2, 1, 2, 4, 1, 1, 12, 2, 2, 1, 2, 1, 7, 1, 3, 1, 1, 1, 8, 1, 1, 2, 11, 1, 2, 1, 2, 1, 2, 1, 16, 1, 1, 4, 2, 2, 2, 1, 5, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define a number to be gapless (listed by A066311) iff its prime indices cover an interval of positive integers.

Examples

			The counted factorizations of n = 2, 4, 8, 12, 24, 36, 48:
  (2)  (4)    (8)      (12)     (24)       (36)       (48)
       (2*2)  (2*4)    (2*6)    (3*8)      (4*9)      (6*8)
              (2*2*2)  (3*4)    (4*6)      (6*6)      (2*24)
                       (2*2*3)  (2*12)     (2*18)     (3*16)
                                (2*2*6)    (3*12)     (4*12)
                                (2*3*4)    (2*2*9)    (2*3*8)
                                (2*2*2*3)  (2*3*6)    (2*4*6)
                                           (3*3*4)    (3*4*4)
                                           (2*2*3*3)  (2*2*12)
                                                      (2*2*2*6)
                                                      (2*2*3*4)
                                                      (2*2*2*2*3)
		

Crossrefs

The shortest of these factorizations is listed at A356234, length A287170.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356226 lists the lengths of maximal gapless submultisets of prime indices:
- length: A287170
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sqq[n_]:=Max@@Differences[primeMS[n]]<=1;
    Table[Length[Select[facs[n],And@@sqq/@#&]],{n,100}]

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
		

Crossrefs

Row sums are A001222.
Singleton row positions are A073491, complement A073492.
Length-2,3,4 row positions are A073493-A073495.
Row lengths are A287170, firsts A066205.
Row minima are A356227.
Row maxima are A356228.
Bisected run-lengths are A356229.
Standard composition numbers of rows are A356230.
Heinz numbers of rows are A356231.
Positions of first appearances are A356232.
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A356225 Number of divisors of n whose prime indices do not cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 3, 0, 1, 2, 1, 3, 3, 2, 1, 1, 2, 2, 3, 3, 1, 4, 1, 0, 3, 2, 3, 2, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 1, 2, 4, 3, 3, 1, 3, 3, 4, 3, 2, 1, 5, 1, 2, 5, 0, 3, 5, 1, 3, 3, 6, 1, 2, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(70) = 6 divisors: 5, 7, 10, 14, 35, 70.
		

Crossrefs

These divisors belong to the complement of A055932, a subset of A073491.
These divisors belong to A080259, a superset of A073492.
The complement is counted by A356224.
A001223 lists the prime gaps.
A328338 has third-largest divisor prime, smallest A119313.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    Table[Length[Select[Divisors[n],!normQ[primeMS[#]]&]],{n,100}]

Formula

a(n) = A000005(n) - A356224(n).

A384884 Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (411)     (421)      (431)
                            (11111)  (2211)    (511)      (521)
                                     (3111)    (2221)     (611)
                                     (21111)   (3211)     (2222)
                                     (111111)  (4111)     (3221)
                                               (22111)    (4211)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets instead of strict partitions we have A384175.
The strict case is A384178, for anti-runs A384880.
For anti-runs we have A384885.
For equal instead of distinct lengths we have A384887.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]

A356230 The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 8, 1, 4, 1, 5, 3, 3, 1, 8, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 2, 8, 1, 3, 3, 9, 1, 5, 1, 5, 4, 3, 1, 16, 2, 6, 3, 5, 1, 8, 3, 9, 3, 3, 1, 8, 1, 3, 5, 32, 3, 5, 1, 5, 3, 6, 1, 16, 1, 3, 4, 5, 2, 5, 1, 17, 8, 3, 1, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), which is the 38th composition in standard order, so a(18564) = 38.
		

Crossrefs

Numbers grouped by number of gaps in prime indices are A073491-A073495.
These are the standard composition numbers of rows of A356226.
Using Heinz numbers instead of standard compositions gives A356231.
Positions of first appearances are A356603, sorted A356232.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A066099 lists compositions in standard order.
A132747 counts non-isolated divisors, complement A132881.
A333627 represents the run-lengths of standard compositions.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

A000120(a(n)) = A287170(n).
A333766(a(n)) = A356228(n).
A333768(a(n)) = A356227(n).

A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 160, 200, 220, 250, 256, 320, 400, 440, 500, 512, 550, 640, 800, 880, 1000, 1024, 1100, 1210, 1250, 1280, 1600, 1760, 1870, 2000, 2048, 2200, 2420, 2500, 2560, 2750, 3200, 3520, 3740, 4000, 4096, 4400
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positions of first appearances of rows in A356226.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
     10: {1,3}
     16: {1,1,1,1}
     20: {1,1,3}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     50: {1,3,3}
     64: {1,1,1,1,1,1}
     80: {1,1,1,1,3}
    100: {1,1,3,3}
    110: {1,3,5}
    128: {1,1,1,1,1,1,1}
    160: {1,1,1,1,1,3}
    200: {1,1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    256: {1,1,1,1,1,1,1,1}
    320: {1,1,1,1,1,1,3}
    400: {1,1,1,1,3,3}
		

Crossrefs

The partitions with these Heinz numbers are counted by A053251.
This is the odd restriction of A055932.
A subset of A066208 (numbers with all odd prime indices).
This is the sorted version of A356603.
These are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232 (this sequence)
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[1000],normQ[(primeMS[#]+1)/2]&]
Showing 1-10 of 35 results. Next