A048898
One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-1).
Original entry on oeis.org
0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, 6139557, 25670807, 123327057, 123327057, 5006139557, 11109655182, 102662389557, 407838170807, 3459595983307, 3459595983307, 79753541295807, 365855836217682, 2273204469030182, 2273204469030182, 49956920289342682
Offset: 0
a(0)=0 because 0 satisfies any equation in integers modulo 1.
a(1)=2 because 2 is one solution of x^2+1=0 modulo 5. (The other solution is 3, which gives rise to A048899.)
a(2)=7 because the equation (5y+a(1))^2+1=0 modulo 25 means that y is 1 modulo 5.
- J. H. Conway, The Sensual Quadratic Form, p. 118, Mathematical Association of America, 1997, The Carus Mathematical Monographs, Number 26.
- K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.
-
[n le 2 select 2*(n-1) else Self(n-1)^5 mod 5^(n-1): n in [1..30]]; // Vincenzo Librandi, Feb 29 2016
-
a[0] = 0; a[1] = 2; a[n_] := a[n] = Mod[a[n-1]^5, 5^n]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 24 2011, after PARI *)
Join[{0}, RecurrenceTable[{a[1] == 2, a[n] == Mod[a[n-1]^5, 5^n]}, a, {n, 25}]] (* Vincenzo Librandi, Feb 29 2016 *)
-
{a(n) = if( n<2, 2, a(n-1)^5) % 5^n}
-
a(n) = lift(sqrt(-1 + O(5^n))); \\ Kevin Ryde, Dec 22 2020
A286841
One of the two successive approximations up to 13^n for 13-adic integer sqrt(-1). Here the 8 (mod 13) case (except for n=0).
Original entry on oeis.org
0, 8, 99, 1958, 28322, 228249, 2827300, 55922199, 808904403, 9781942334, 52199939826, 603633907222, 11356596271444, 11356596271444, 1828607235824962, 37264994707118563, 651495710876207647, 5974828584341646375, 49226908181248336040
Offset: 0
-
{0}~Join~Table[#&@@Select[PowerModList[-1, 1/2, 13^k], Mod[#, 13] == 8 &], {k, 18}] (* Giorgos Kalogeropoulos, Oct 22 2022 *)
-
a(n) = if (n, 13^n - truncate(sqrt(-1+O(13^n))), 0); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286841(n):
return A(8, 13, n)
print(a286841(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286841(n)
A(8, 13, n)
end
p A286841(100)
A286877
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 4 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 4, 38, 2928, 27493, 1029745, 23747457, 313398285, 3596107669, 94280954402, 450044583893, 28673959190179, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 42949774758062711577, 91610966633729580058, 6709533061724423693474
Offset: 0
a(1) = ( 4)_17 = 4,
a(2) = ( 24)_17 = 38,
a(3) = ( A24)_17 = 2928,
a(4) = (5A24)_17 = 27493.
-
a(n) = truncate(sqrt(-1+O(17^n))); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286877(n):
return A(4, 17, n)
print(a286877(100)) # Indranil Ghosh, Aug 03 2017
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286877(n)
A(4, 17, n)
end
p A286877(100)
A286878
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535
Offset: 0
a(1) = ( D)_17 = 13,
a(2) = ( ED)_17 = 251,
a(3) = ( 6ED)_17 = 1985,
a(4) = (B6ED)_17 = 56028.
-
a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286878(n): return A(13, 17, n)
print(a286878(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286878(n)
A(13, 17, n)
end
p A286878(100)
A324077
One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 2 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 2, 28, 1211, 3408, 346140, 2573898, 60495606, 311489674, 6837335442, 70464331680, 208322823529, 18129926763899, 111322267253823, 1928572906807341, 29490207606702364, 438977351719428420, 7093143443551226830, 15743559362932564763, 1365208442786421282311
Offset: 0
The unique number k in [1, 13^2] and congruent to 2 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 28, so a(2) = 28.
The unique number k in [1, 13^3] and congruent to 2 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 1211, so a(3) = 1211.
A324082
One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 3 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 3, 68, 575, 13757, 156562, 4612078, 52880168, 178377202, 9967145854, 137221138330, 1240089073122, 22746013801566, 279024950148857, 2399150696294628, 2399150696294628, 104770936724476142, 3431853982640375347, 98586429095835092610, 1335595905567366417029
Offset: 0
The unique number k in [1, 13^2] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 68, so a(2) = 68.
The unique number k in [1, 13^3] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 575, so a(3) = 575.
A324083
One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 10 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 10, 101, 1622, 14804, 214731, 214731, 9868349, 637353519, 637353519, 637353519, 552071320915, 552071320915, 23850156443396, 1538225689404661, 48786742317796129, 560645672458703699, 5218561936740962586, 13868977856122300519, 126324384808079693648
Offset: 0
The unique number k in [1, 13^2] and congruent to 10 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 101, so a(2) = 101.
The unique number k in [1, 13^3] and congruent to 10 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 1622, so a(3) = 1622.
A324084
One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 11 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 11, 141, 986, 25153, 25153, 2252911, 2252911, 504241047, 3767163931, 67394160169, 1583837570508, 5168158358582, 191552839338430, 2008803478891948, 21695685407388393, 226439257463751421, 1557272475830111103, 96711847589024828366, 96711847589024828366
Offset: 0
The unique number k in [1, 13^2] and congruent to 11 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 141, so a(2) = 141.
The unique number k in [1, 13^3] and congruent to 11 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 986, so a(3) = 986.
A322085
One of the two successive approximations up to 13^n for 13-adic integer sqrt(3). Here the 4 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 4, 108, 1122, 18698, 361430, 1104016, 5930825, 570667478, 7912243967, 113957237697, 251815729546, 11004778093768, 104197118583692, 3132948184506222, 26757206498701956, 589802029653700283, 7909384730668678534, 85763128005100719931, 648040162764887685576
Offset: 0
4^2 = 16 = 1*13 + 3.
108^2 = 11664 = 69*13^2 + 3.
1122^2 = 1258884 = 573*13^3 + 3.
-
S:= map(t -> op([1,3],t),[padic:-evalp(RootOf(x^2-3,x),13,30)]):
S4:= op(select(t -> t[1]=4, S)):
seq(add(S4[i]*13^(i-1),i=1..n-1),n=1..31); # Robert Israel, Jun 13 2019
-
a(n) = truncate(sqrt(3+O(13^n)))
A318960
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.
Original entry on oeis.org
1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2
The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
Expansions of p-adic integers:
this sequence,
A318961 (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
Showing 1-10 of 15 results.
Comments