A218045
Number of truth tables of bracketed formulas (case 3).
Original entry on oeis.org
0, 0, 1, 2, 9, 46, 262, 1588, 10053, 65686, 439658, 2999116, 20774154, 145726348, 1033125004, 7390626280, 53281906861, 386732675046, 2823690230850, 20725376703324, 152833785130398, 1131770853856100, 8412813651862868
Offset: 0
G.f. A(x) = x^2 + 2*x^3 + 9*x^4 + 46*x^5 + 262*x^6 + 1588*x^7 + 10053*x^8 + 65686*x^9 + 439658*x^10 + ...
-
CoefficientList[Series[(2+2*Sqrt[1-8*x]-(1+Sqrt[1-8*x])*Sqrt[2+2*Sqrt[1-8*x]+8*x])/8, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2014 after Yildiz *)
Flatten[{0,0,Table[Sum[(Sum[Binomial[k,2*k+i+2-n]*Binomial[k+i-1,i],{i,0,n-k-1}]*Binomial[2*n-2,k])/(n-1),{k,0,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Nov 19 2014 after Vladimir Kruchinin *)
-
a(n):=sum((sum(binomial(k,2*k+i-n)*binomial(k+i-1,i),i,0,n-k+1))*binomial(2*n+2,k),k,0,n+1)/(n+1); /* Vladimir Kruchinin, Nov 19 2014 */
-
x='x+O('x^50); concat([0,0], Vec((2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2 + 2*sqrt(1-8*x)+8*x))/8)) \\ G. C. Greubel, Apr 01 2017
A155495
Triangle read by rows: t(n,m) = binomial(2*n,2*m) * binomial(n,m).
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 45, 45, 1, 1, 112, 420, 112, 1, 1, 225, 2100, 2100, 225, 1, 1, 396, 7425, 18480, 7425, 396, 1, 1, 637, 21021, 105105, 105105, 21021, 637, 1, 1, 960, 50960, 448448, 900900, 448448, 50960, 960, 1, 1, 1377, 110160, 1559376, 5513508, 5513508, 1559376, 110160, 1377, 1
Offset: 0
Table starts:
1;
1, 1;
1, 12, 1;
1, 45, 45, 1;
1, 112, 420, 112, 1;
1, 225, 2100, 2100, 225, 1;
1, 396, 7425, 18480, 7425, 396, 1;
1, 637, 21021, 105105, 105105, 21021, 637, 1;
1, 960, 50960, 448448, 900900, 448448, 50960, 960, 1;
1, 1377, 110160, 1559376, 5513508, 5513508, 1559376, 110160, 1377, 1;
1, 1900, 218025, 4651200, 26453700, 46558512, 26453700, 4651200, 218025, 1900, 1;
-
[Binomial(n, k)*Binomial(2*n, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
-
seq(seq(binomial(2*n,2*m)*binomial(n,m), m=0..n),n=0..10); # Robert Israel, Jun 12 2017
-
T[n_, k_]:= Binomial[2*n,2*k]*Binomial[n,k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
Abs[Flatten[Table[CoefficientList[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x], {n, 1, 20}]]] (* or *)
T[n_,k_]:= (-1)^k*Coefficient[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x^k] (* John M. Campbell, Oct 23 2011 *)
-
flatten([[binomial(n, k)*binomial(2*n, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021
A240688
Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).
Original entry on oeis.org
1, 1, 5, 19, 81, 351, 1553, 6959, 31489, 143551, 658305, 3033471, 14034177, 65147135, 303285505, 1415422719, 6620053505, 31021657087, 145613977601, 684537354239, 3222408929281, 15187861143551, 71663163121665
Offset: 0
-
CoefficientList[Series[-(x Sqrt[-4 x^2 - 4 x + 1] - 2 x^2 - 3 x) / ((x + 1) Sqrt[-4 x^2 - 4 x + 1] + 4 x^3 + 8 x^2 + 3 x - 1), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
-
a(n):=sum((sum(binomial(k,n-k-i)*binomial(k+i-1,i),i,0,n-k))*binomial(n,k),k,0,n);
-
x='x+O('x^50); Vec(-(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1)) \\ G. C. Greubel, Apr 05 2017
A329816
Triangular array, read by rows: T(n,k) = [(x*y)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 8, 2, 1, 1, 6, 27, 24, 27, 6, 1, 1, 12, 70, 132, 216, 132, 70, 12, 1, 1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1, 1, 30, 306, 1370, 4035, 6900, 8840, 6900, 4035, 1370, 306, 30, 1, 1, 42, 553, 3332, 12621, 29750, 51065, 58800, 51065, 29750, 12621, 3332, 553, 42, 1
Offset: 0
-1 + (1 + x + 1/x)*(1 + y + 1/y) = x*y + 1/(x*y) + x/y + y/x + x + 1/x + y + 1/y. So T(1,-1) = 1, T(1,0) = 0, T(1,1) = 1.
Triangle begins:
1;
1, 0, 1;
1, 2, 8, 2, 1;
1, 6, 27, 24, 27, 6, 1;
1, 12, 70, 132, 216, 132, 70, 12, 1;
1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1;
A370245
Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^2)^3 )^n.
Original entry on oeis.org
1, 2, 16, 110, 828, 6352, 49696, 393668, 3148316, 25362992, 205519616, 1673272702, 13677016932, 112165564656, 922490228032, 7605558361960, 62839438825244, 520180768020464, 4313251202569216, 35818392770702104, 297846498752214128, 2479748570715505472
Offset: 0
-
a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
A370242
Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^2) )^n.
Original entry on oeis.org
1, 2, 12, 74, 480, 3202, 21756, 149746, 1040640, 7285538, 51307212, 363057114, 2579270304, 18385404546, 131429288828, 941857237474, 6764184258560, 48671099313730, 350799656912652, 2532218940625642, 18303373070813280, 132462237913391362, 959699439413581692
Offset: 0
-
a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
Showing 1-6 of 6 results.
Comments