cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A218045 Number of truth tables of bracketed formulas (case 3).

Original entry on oeis.org

0, 0, 1, 2, 9, 46, 262, 1588, 10053, 65686, 439658, 2999116, 20774154, 145726348, 1033125004, 7390626280, 53281906861, 386732675046, 2823690230850, 20725376703324, 152833785130398, 1131770853856100, 8412813651862868
Offset: 0

Views

Author

N. J. A. Sloane, Oct 23 2012

Keywords

Comments

Equals the self-convolution of A186997 (up to offset). - Paul D. Hanna, Jul 03 2023

Examples

			G.f. A(x) = x^2 + 2*x^3 + 9*x^4 + 46*x^5 + 262*x^6 + 1588*x^7 + 10053*x^8 + 65686*x^9 + 439658*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2+2*Sqrt[1-8*x]-(1+Sqrt[1-8*x])*Sqrt[2+2*Sqrt[1-8*x]+8*x])/8, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2014 after Yildiz *)
    Flatten[{0,0,Table[Sum[(Sum[Binomial[k,2*k+i+2-n]*Binomial[k+i-1,i],{i,0,n-k-1}]*Binomial[2*n-2,k])/(n-1),{k,0,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Nov 19 2014 after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((sum(binomial(k,2*k+i-n)*binomial(k+i-1,i),i,0,n-k+1))*binomial(2*n+2,k),k,0,n+1)/(n+1); /* Vladimir Kruchinin, Nov 19 2014  */
    
  • PARI
    x='x+O('x^50); concat([0,0], Vec((2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2 + 2*sqrt(1-8*x)+8*x))/8)) \\ G. C. Greubel, Apr 01 2017

Formula

Yildiz gives a g.f.: (2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2+2*sqrt(1-8*x)+8*x))/8.
a(n+1) = (Sum_{k = 0..n} (Sum_{i=0..n-k} (binomial(k, 2*k+i+1-n)*binomial(k+i-1, i)))*binomial(2*n,k))/n. - Vladimir Kruchinin, Nov 19 2014
G.f. G(x) = A(x)/x satisfies G(x) = x*((G(x)*(G(x)+1))/(1-G(x))+1)^2. - Vladimir Kruchinin, Nov 19 2014
a(n) ~ (2*sqrt(3)-3) * 2^(3*n-3) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 19 2014
From Paul D. Hanna, Jul 03 2023: (Start)
G.f. A(x) = Series_Reversion( x*(1 + sqrt(1 - 4*x - 4*x^2)) / 2 )^2.
G.f. A(x) = exp( Sum_{n>=1} A288470(n) * x^n/n ), where A288470(n) = Sum_{k=0..n} binomial(n,k) * binomial(2*n,2*k). (End)

A155495 Triangle read by rows: t(n,m) = binomial(2*n,2*m) * binomial(n,m).

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 45, 45, 1, 1, 112, 420, 112, 1, 1, 225, 2100, 2100, 225, 1, 1, 396, 7425, 18480, 7425, 396, 1, 1, 637, 21021, 105105, 105105, 21021, 637, 1, 1, 960, 50960, 448448, 900900, 448448, 50960, 960, 1, 1, 1377, 110160, 1559376, 5513508, 5513508, 1559376, 110160, 1377, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 23 2009

Keywords

Comments

T(n,k) equals (-1)^k times the coefficient of x^k in 3F2(-n,-n,-n+1/2;1,1/2;x); see Mathematica code below. - John M. Campbell, Oct 23 2011

Examples

			Table starts:
  1;
  1,    1;
  1,   12,      1;
  1,   45,     45,       1;
  1,  112,    420,     112,        1;
  1,  225,   2100,    2100,      225,        1;
  1,  396,   7425,   18480,     7425,      396,        1;
  1,  637,  21021,  105105,   105105,    21021,      637,       1;
  1,  960,  50960,  448448,   900900,   448448,    50960,     960,      1;
  1, 1377, 110160, 1559376,  5513508,  5513508,  1559376,  110160,   1377,    1;
  1, 1900, 218025, 4651200, 26453700, 46558512, 26453700, 4651200, 218025, 1900, 1;
		

Crossrefs

Cf. A155497, A155516, A288470 (row sums).

Programs

  • Magma
    [Binomial(n, k)*Binomial(2*n, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
    
  • Maple
    seq(seq(binomial(2*n,2*m)*binomial(n,m), m=0..n),n=0..10); # Robert Israel, Jun 12 2017
  • Mathematica
    T[n_, k_]:= Binomial[2*n,2*k]*Binomial[n,k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    Abs[Flatten[Table[CoefficientList[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x], {n, 1, 20}]]] (* or *)
    T[n_,k_]:= (-1)^k*Coefficient[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x^k] (* John M. Campbell, Oct 23 2011 *)
  • Sage
    flatten([[binomial(n, k)*binomial(2*n, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021

Formula

T(n, k) = binomial(n, k)*binomial(2*n, 2*k).
Sum_{k=0..n} T(n, k) = A288470(n).

A240688 Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).

Original entry on oeis.org

1, 1, 5, 19, 81, 351, 1553, 6959, 31489, 143551, 658305, 3033471, 14034177, 65147135, 303285505, 1415422719, 6620053505, 31021657087, 145613977601, 684537354239, 3222408929281, 15187861143551, 71663163121665
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 10 2014

Keywords

Crossrefs

Cf. A052709.

Programs

  • Mathematica
    CoefficientList[Series[-(x Sqrt[-4 x^2 - 4 x + 1] - 2 x^2 - 3 x) / ((x + 1) Sqrt[-4 x^2 - 4 x + 1] + 4 x^3 + 8 x^2 + 3 x - 1), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
  • Maxima
    a(n):=sum((sum(binomial(k,n-k-i)*binomial(k+i-1,i),i,0,n-k))*binomial(n,k),k,0,n);
    
  • PARI
    x='x+O('x^50); Vec(-(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1)) \\ G. C. Greubel, Apr 05 2017

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..(n-k)} binomial(k,n-k-i)*binomial(k+i-1,i)*binomial(n,k).
A(x) = x*D'(x)/D(x) where D(x)=(1-sqrt(1-4*x-4*x^2))/(2*(1+x)) is g.f. of A052709.
a(n) ~ 2^(n-1/4) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 12 2014
a(n) = Sum_{i=0..n/2} binomial(n,i)*binomial(2*n-2*i-1,n-2*i). - Vladimir Kruchinin, Mar 10 2015
Conjecture: n*(n-1)*a(n) -(3*n-2)*(n-1)*a(n-1) +2*(-4*n^2+7*n-1)*a(n-2) -4*n*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
From Peter Bala, Feb 13 2022: (Start)
The o.g.f. A(x) satisfies the differential equation (8*x^4 + 20*x^3 + 14*x^2 + x - 1)*A(x)' + (8*x^3 + 12*x^2 + 6*x + 3)*A(x) - 2 = 0 with A(0) = 1.
n*a(n) = (n+2)*a(n-1) + (14*n-22)*a(n-2) + (20*n-48)*a(n-3) + (8*n-24)*a(n-4).
Mathar's conjectural third-order recurrence above can be verified using Maple's gfun:-rectodiffeq command.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
From Peter Bala, Aug 30 2025: (Start)
a(n) = Sum_{0 <= i, j <= n/2} binomial(n, j)*binomial(n+i-1, i)*binomial(n, 2*i+2*j) (verified to satisfy Mathar's third-order recurrence using the MulZeil procedure in Doron Zeilberger's MultiZeilberger Maple package).
Equivalently, a(n) = [x^n] ( (1 + x + x^2 + x^3)/(1 - x^2) )^n. Hence the Gauss congruences hold as stated above. Cf. A288470.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for primes p >= 5 and positive integers n and k. (End)

A329816 Triangular array, read by rows: T(n,k) = [(x*y)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 8, 2, 1, 1, 6, 27, 24, 27, 6, 1, 1, 12, 70, 132, 216, 132, 70, 12, 1, 1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1, 1, 30, 306, 1370, 4035, 6900, 8840, 6900, 4035, 1370, 306, 30, 1, 1, 42, 553, 3332, 12621, 29750, 51065, 58800, 51065, 29750, 12621, 3332, 553, 42, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2019

Keywords

Comments

Also the coefficient of (x/y)^k in the expansion of (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.
T(n,k) is the number of n step walks a chess king can take from (0,0) to (k,k). For example, for n=3 starting from (0,0) there is 1 walk to (3,3), 6 walks to (2,2), 27 walks to (1,1), 24 walks to (0,0), 27 walks to (-1,-1), 6 walks to (-2,-2) and 1 walk to (-3,-3). - Martin Clever, May 27 2023

Examples

			-1 + (1 + x + 1/x)*(1 + y + 1/y) = x*y + 1/(x*y) + x/y + y/x + x + 1/x + y + 1/y. So T(1,-1) = 1, T(1,0) = 0, T(1,1) = 1.
Triangle begins:
                          1;
                    1,    0,    1;
              1,    2,    8,    2,   1;
         1,   6,   27,   24,   27,   6,   1;
    1,  12,  70,  132,  216,  132,  70,  12,  1;
1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1;
		

Crossrefs

T(n,0) gives A094061.
Row sums give A288470.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y))^n, k), k)}

Formula

T(n,k) = T(n,-k).

A370245 Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^2)^3 )^n.

Original entry on oeis.org

1, 2, 16, 110, 828, 6352, 49696, 393668, 3148316, 25362992, 205519616, 1673272702, 13677016932, 112165564656, 922490228032, 7605558361960, 62839438825244, 520180768020464, 4313251202569216, 35818392770702104, 297846498752214128, 2479748570715505472
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n,k) * binomial(3*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2)^3 ). See A369263.

A370242 Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^2) )^n.

Original entry on oeis.org

1, 2, 12, 74, 480, 3202, 21756, 149746, 1040640, 7285538, 51307212, 363057114, 2579270304, 18385404546, 131429288828, 941857237474, 6764184258560, 48671099313730, 350799656912652, 2532218940625642, 18303373070813280, 132462237913391362, 959699439413581692
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(3*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2) ). See A369208.
Showing 1-6 of 6 results.