cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A051296 INVERT transform of factorial numbers.

Original entry on oeis.org

1, 1, 3, 11, 47, 231, 1303, 8431, 62391, 524495, 4960775, 52223775, 605595319, 7664578639, 105046841127, 1548880173119, 24434511267863, 410503693136559, 7315133279097607, 137787834979031839, 2734998201208351479, 57053644562104430735, 1247772806059088954855
Offset: 0

Views

Author

Keywords

Comments

a(n) = Sum[ a1!a2!...ak! ] where (a1,a2,...,ak) ranges over all compositions of n. a(n) = number of trees on [0,n] rooted at 0, consisting entirely of filaments and such that the non-root labels on each filament, when arranged in order, form an interval of integers. A filament is a maximal path (directed away from the root) whose interior vertices all have outdegree 1 and which terminates at a leaf. For example with n=3, a(n) = 11 counts all n^(n-2) = 16 trees on [0,3] except the 3 trees {0->1, 1->2, 1->3}, {0->2, 2->1, 2->3}, {0->3, 3->1, 3->2} (they fail the all-filaments test) and the 2 trees {0->2, 0->3, 3->1}, {0->2, 0->1, 1->3} (they fail the interval-of-integers test). - David Callan, Oct 24 2004
a(n) is the number of lists of "unlabeled" permutations whose total length is n. "Unlabeled" means each permutation is on an initial segment of the positive integers (cf. A090238). Example: with dashes separating permutations, a(3) = 11 counts 123, 132, 213, 231, 312, 321, 1-12, 1-21, 12-1, 21-1, 1-1-1. - David Callan, Sep 20 2007
Number of compositions of n where there are k! sorts of part k. - Joerg Arndt, Aug 04 2014

Examples

			a(4) = 47 = 1*24 + 1*6 + 3*2 + 11*1.
a(4) = 47, the upper left term of M^4.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Cf. A051295, row sums of A090238.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*factorial(i), i=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 28 2015
  • Mathematica
    CoefficientList[Series[Sum[Sum[k!*x^k, {k, 1, 20}]^n, {n, 0, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 22 2009 *)
  • Sage
    h = lambda x: 1/(1-x*hypergeometric((1, 2), (), x))
    taylor(h(x),x,0,22).list() # Peter Luschny, Jul 28 2015
    
  • Sage
    def A051296_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] * k
            C[0] = sum(C[k] for k in (1..n))
            R.append(C[0])
        return R
    print(A051296_list(23)) # Peter Luschny, Feb 21 2016

Formula

G.f.: 1/(1-Sum_{n>=1} n!*x^n).
a(0) = 1; a(n) = Sum_{k=1..n} a(n-k)*k! for n>0.
a(n) = Sum_{k>=0} A090238(n, k). - Philippe Deléham, Feb 05 2004
From Gary W. Adamson, Sep 26 2011: (Start)
a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 0, 2, 0, 0, 0, ...
3, 0, 0, 3, 0, 0, ...
4, 0, 0, 0, 4, 0, ...
5, 0, 0, 0, 0, 5, ...
... (End)
G.f.: 1 + x/(G(0) - 2*x) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
a(n) ~ n! * (1 + 2/n + 7/n^2 + 35/n^3 + 216/n^4 + 1575/n^5 + 13243/n^6 + 126508/n^7 + 1359437/n^8 + 16312915/n^9 + 217277446/n^10), for coefficients see A260530. - Vaclav Kotesovec, Jul 28 2015
From Peter Bala, May 26 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 2*x/(1 - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - n*x/(1 - (n - 1)*x/(1 - ...)))))))))). Cf. S-fraction for the o.g.f. of A000142.
A(x) = 1/(1 - x/(1 - x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ... ))))))))). (End)

Extensions

Entry revised by David Callan, Sep 20 2007

A307064 Expansion of 1 - 1/Sum_{k>=0} k!!*x^k.

Original entry on oeis.org

0, 1, 1, 0, 3, 1, 18, 13, 155, 168, 1691, 2381, 22022, 37401, 331087, 649036, 5626103, 12372161, 106486594, 257573405, 2220690451, 5824952232, 50593271507, 142387607469, 1250521775454, 3745193283657, 33338037080183, 105558942751948, 953776675614223
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    F2:= func< n | n mod 2 eq 0 select Round(2^(n/2)*Gamma(n/2+1)) else Round( Gamma((n+3)/2)*Binomial(n+1, Floor((n+1)/2))/2^((n+1)/2) ) >;
    R:=PowerSeriesRing(Rationals(), m);
    [0] cat Coefficients(R!( 1 - 1/(&+[F2(j)*x^j : j in [0..m+2]]) )); // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    nmax = 28; CoefficientList[Series[1 - 1/Sum[k!! x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    a[0] = 0; a[n_]:= a[n] = n!! - Sum[k!! a[n-k], {k,n-1}];
    Table[a[n], {n, 0, 28}]
  • SageMath
    from sympy import factorial2
    m=80;
    def f(x): return 1 - 1/sum(factorial2(k)*x^k for k in range(m+1))
    def A307063_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307063_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 0; a(n) = n!! - Sum_{k=1..n-1} k!!*a(n-k).

A295553 Expansion of 1/(1 - Sum_{k>=1} (2*k-1)!!*x^k).

Original entry on oeis.org

1, 1, 4, 22, 154, 1330, 13882, 171802, 2474098, 40738594, 755322778, 15566915770, 352862768434, 8720662458754, 233285616212506, 6713983428179098, 206813607458357746, 6788092999359053410, 236481982146071359258, 8714521818620631672058, 338660320676350494328882, 13841377309645038610883266
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2017

Keywords

Comments

Invert transform of A001147.
Number of compositions (ordered partitions) of n where there are 1*3*5*...*(2*k-1) sorts of part k.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - Sum[(2 k - 1)!! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[1 + x/(1 - 2 x + ContinuedFractionK[-k x, 1, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(2 k - 1)!! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A001147(k)*x^k).
G.f.: 1 + x/(1 - 2*x - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...)))))), a continued fraction.
a(0) = 1; a(n) = Sum_{k=1..n} (2*k-1)!!*a(n-k).

A305535 Expansion of 1/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 13, 75, 557, 5179, 58589, 784715, 12154061, 213593563, 4195613373, 91031201643, 2160916171181, 55687501548539, 1547866851663261, 46150908197995403, 1469089501918434957, 49722765216242122267, 1782934051704982201469, 67514992620138056010667
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2018

Keywords

Comments

Invert transform of A000165, shifted right one place.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 20; CoefficientList[Series[1/(1 - Sum[2^(k - 1) (k - 1)! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[2^(k - 1) (k - 1)! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(n) ~ 2^(n-1) * (n-1)!. - Vaclav Kotesovec, Sep 18 2021

A335848 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k!! * a(n-k).

Original entry on oeis.org

1, 1, 4, 21, 152, 1355, 14568, 182427, 2612224, 42073209, 752981280, 14823367845, 318347145216, 7406554353939, 185573713100160, 4981725842622795, 142650055922872320, 4340032650657965745, 139809806502181765632, 4754045863586538697077, 170163141506896128122880
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k!! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 - x Exp[x^2/2] (1 + Sqrt[Pi/2] Erf[x/Sqrt[2]])), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (1 - x * exp(x^2/2) * (1 + sqrt(Pi/2) * erf(x/sqrt(2)))), where erf() is the error function.
Showing 1-5 of 5 results.