cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287326 Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1
Offset: 0

Views

Author

Kolosov Petro, Aug 31 2017

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(1, n, k), i.e T(n, k) is partial case of L(m, n, k) for m = 1.
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
  ----------------------------------------
  k=    0   1   2   3   4   5   6   7   8
  ----------------------------------------
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  7,  1;
  n=3:  1, 13, 13,  1;
  n=4:  1, 19, 25, 19,  1;
  n=5:  1, 25, 37, 37, 25,  1;
  n=6:  1, 31, 49, 55, 49, 31,  1;
  n=7:  1, 37, 61, 73, 73, 61, 37,  1;
  n=8:  1, 43, 73, 91, 97, 91, 73, 43,  1;
		

Crossrefs

Columns k=0..6 give A000012, A016921, A017533, A161705, A103214, A128470, A158065.
Column sums k=0..4 give A000027, A000567, A051866, A051872, A255185.
Row sums give A001093.
Various cases of L(m, n, k): This sequence (m=1), A300656(m=2), A300785(m=3). See comments for L(m, n, k).
Differences of cubes n^3 are T(A000124(n), 1).

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    /* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018
    
  • Maple
    T := (n, k) -> 6*k*(n-k) + 1:
    seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *)
  • PARI
    t(n, k) = 6*k*(n-k)+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */
    trianglerows(9) \\ Felix Fröhlich, Jan 09 2018
    
  • SageMath
    def A287326(n,k): return 6*k*(n-k) + 1
    flatten([[A287326(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 25 2024

Formula

T(n, k) = 6*k*(n-k) + 1.
G.f. of column k: n^k*(1+(6*k-1)*n)/(1-n)^2.
G.f.: (1 - x - x*y + 7*x^2*y)/((1 - x)^2*(1 - x*y)^2). - Stefano Spezia, Oct 09 2018 [Adapted by Stefano Spezia, Sep 25 2024]
From Kolosov Petro, Jun 05 2019: (Start)
T(n, k) = 1/2 * T(A294317(n, k), k) + 1/2.
T(n+1, k) = 2*T(n, k) - T(n-1, k), for n >= k.
T(n, k) = 6*A077028(n, k) - 5.
T(2n, n) = A227776(n).
T(2n+1, n) = A003154(n+1).
T(2n+3, n) = A166873(n+1).
Sum_{k=0..n-1} T(n, k) = Sum_{k=1..n} T(n, k) = A000578(n).
Sum_{k=1..n-1} T(n, k) = A068601(n).
(n+1)^3 - n^3 = T(A000124(n), 1). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = (-1/2)*(1 + (-1)^n)*A016969(floor(n/2) - 1). - G. C. Greubel, Sep 25 2024

A300656 Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0

Views

Author

Kolosov Petro, Mar 10 2018

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(2, n, k).
Fifth power can be expressed as row sum of triangle T(n, k).
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
--------------------------------------------------------------------------
k=    0     1     2      3      4      5      6      7     8     9    10
--------------------------------------------------------------------------
n=0:  1;
n=1:  1,    1;
n=2:  1,   31,    1;
n=3:  1,  121,  121,     1;
n=4:  1,  271,  481,   271,     1;
n=5:  1,  481, 1081,  1081,   481,     1;
n=6:  1,  751, 1921,  2431,  1921,   751,     1;
n=7:  1, 1081, 3001,  4321,  4321,  3001,  1081,     1;
n=8:  1, 1471, 4321,  6751,  7681,  6751,  4321,  1471,    1;
n=9:  1, 1921, 5881,  9721, 12001, 12001,  9721,  5881, 1921,    1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431,   1;
		

Crossrefs

Various cases of L(m, n, k): A287326(m=1), This sequence (m=2), A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of A002561.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    [[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
    
  • Maple
    a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
    Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
    f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
  • PARI
    t(n, k) = 30*k^2*(n-k)^2+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */ trianglerows(9)
    
  • Sage
    [[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018

Formula

From Kolosov Petro, Apr 12 2020: (Start)
T(n, k) = 30 * k^2 * (n-k)^2 + 1.
T(n, k) = 30 * A094053(n,k)^2 + 1.
T(n, k) = A158558((n-k) * k).
T(n+2, k) = 3*T(n+1, k) - 3*T(n, k) + T(n-1, k), for n >= k.
Sum_{k=1..n} T(n, k) = A000584(n).
Sum_{k=0..n-1} T(n, k) = A000584(n).
Sum_{k=0..n} T(n, k) = A002561(n).
Sum_{k=1..n-1} T(n, k) = A258807(n).
Sum_{k=1..n-1} T(n, k) = -A024003(n), n > 1.
Sum_{k=1..r} T(n, k) = A316349(2,r,0)*n^0 - A316349(2,r,1)*n^1 + A316349(2,r,2)*n^2. (End)
G.f.: (1 + 26*y + 336*y^2 + 326*y^3 + 31*y^4 + x^2*(1 + 116*y + 486*y^2 + 116*y^3 + y^4) + x*(-2 - 82*y - 882*y^2 - 502*y^3 + 28*y^4))/((-1 + x)^3*(-1 + y)^5). - Stefano Spezia, Oct 30 2018

A300785 Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0

Views

Author

Kolosov Petro, Mar 12 2018

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(3, n, k).
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
--------------------------------------------------------------------
k=   0      1       2       3       4       5       6      7     8
--------------------------------------------------------------------
n=0: 1;
n=1: 1,     1;
n=2: 1,   127,      1;
n=3: 1,  1093,   1093,      1;
n=4: 1,  3739,   8905,   3739,      1;
n=5: 1,  8905,  30157,  30157,   8905,      1;
n=6: 1, 17431,  71569, 101935,  71569,  17431,      1;
n=7: 1, 30157, 139861, 241753, 241753, 139861,  30157,     1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923,    1;
		

Crossrefs

Various cases of L(m, n, k): A287326 (m=1), A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Row sums give A258806.

Programs

  • GAP
    T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
  • Magma
    /* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
    
  • Maple
    T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
  • Mathematica
    T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
    Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
  • PARI
    t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */ trianglerows(9)
    
  • Sage
    [[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
    

Formula

From Kolosov Petro, Apr 12 2020: (Start)
T(n, k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1.
T(n, k) = 140*A094053(n, k)^3 + 0*A094053(n, k)^2 - 14*A094053(n, k)^1 + 1.
T(n+3, k) = 4*T(n+2, k) - 6*T(n+1, k) + 4*T(n, k) - T(n-1, k), for n >= k.
Sum_{k=1..n} T(n, k) = A001015(n).
Sum_{k=0..n} T(n, k) = A258806(n).
Sum_{k=0..n-1} T(n, k) = A001015(n).
Sum_{k=1..n-1} T(n, k) = A258808(n).
Sum_{k=1..n-1} T(n, k) = -A024005(n).
Sum_{k=1..r} T(n, k) = -A316387(3, r, 0)*n^0 + A316387(3, r, 1)*n^1 - A316387(3, r, 2)*n^2 + A316387(3, r, 3)*n^3. (End)
G.f.: (1 + 127*x^6*y^3 - 3*x*(1 + y) + 585*x^5*y^2*(1 + y) + 129*x^4*y*(1 + 17*y + y^2) + 3*x^2*(1 + 45*y + y^2) - x^3*(1 - 579*y - 579*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Sep 14 2024
Showing 1-3 of 3 results.