cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A032305 Number of rooted trees where any 2 subtrees extending from the same node have a different number of nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 51, 111, 240, 533, 1181, 2671, 6014, 13795, 31480, 72905, 168361, 393077, 914784, 2150810, 5040953, 11914240, 28089793, 66702160, 158013093, 376777192, 896262811, 2144279852, 5120176632, 12286984432, 29428496034, 70815501209
Offset: 1

Views

Author

Keywords

Examples

			The a(6) = 6 fully unbalanced trees: (((((o))))), (((o(o)))), ((o((o)))), (o(((o)))), (o(o(o))), ((o)((o))). - _Gus Wiseman_, Jan 10 2018
		

Crossrefs

Programs

  • Maple
    A:= proc(n) if n<=1 then x else convert(series(x* (product(1+ coeff(A(n-1), x,i)*x^i, i=1..n-1)), x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=1..31);  # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0, 1, g((i-1)$2))*g(n-i*j, i-1), j=0..min(1, n/i))))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=1..35);  # Alois P. Heinz, Mar 04 2013
  • Mathematica
    nn=30;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x Product[1+a[i]x^i,{i,1,nn}],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.sol  (* Geoffrey Critzer, Nov 17 2012 *)
    allnim[n_]:=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[allnim/@c]],UnsameQ@@(Count[#,_List,{0,Infinity}]&/@#)&]]/@IntegerPartitions[n-1]];
    Table[Length[allnim[n]],{n,15}] (* Gus Wiseman, Jan 10 2018 *)
    g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[If[j == 0, 1, g[i-1, i-1]]*g[n-i*j, i-1], {j, 0, Min[1, n/i]}]]];
    a[n_] := g[n-1, n-1];
    Array[a, 35] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(x*prod(i=1,n-1,1+a(i)*x^i)+x*O(x^n),n)

Formula

Shifts left under "EFK" (unordered, size, unlabeled) transform.
G.f.: A(x) = x*Product_{n>=1} (1+a(n)*x^n) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Apr 07 2004
Lim_{n->infinity} a(n)^(1/n) = 2.5119824... - Vaclav Kotesovec, Nov 20 2019
G.f.: x * exp(Sum_{n>=1} Sum_{k>=1} (-1)^(k+1) * a(n)^k * x^(n*k) / k). - Ilya Gutkovskiy, Jun 30 2021

A298120 Matula-Goebel numbers of rooted trees in which all positive outdegrees are odd.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 18, 19, 20, 27, 30, 31, 32, 37, 44, 45, 48, 50, 61, 66, 67, 71, 72, 75, 76, 80, 99, 103, 108, 110, 113, 114, 120, 124, 125, 127, 128, 131, 148, 157, 162, 165, 171, 176, 180, 186, 190, 192, 193, 197, 200, 222, 223, 229, 242, 243, 244, 264
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
8  (ooo)
11 ((((o))))
12 (oo(o))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
27 ((o)(o)(o))
30 (o(o)((o)))
31 (((((o)))))
32 (ooooo)
37 ((oo(o)))
44 (oo(((o))))
45 ((o)(o)((o)))
48 (oooo(o))
50 (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    otQ[n_]:=Or[n===1,With[{m=primeMS[n]},OddQ@Length@m&&And@@otQ/@m]];
    Select[Range[1000],otQ]

A298126 Matula-Goebel numbers of rooted trees in which all outdegrees are even.

Original entry on oeis.org

1, 4, 14, 16, 49, 56, 64, 86, 106, 196, 224, 256, 301, 344, 371, 424, 454, 526, 622, 686, 784, 886, 896, 1024, 1154, 1204, 1376, 1484, 1589, 1696, 1816, 1841, 1849, 2104, 2177, 2279, 2386, 2401, 2488, 2744, 2809, 2846, 3101, 3136, 3238, 3544, 3584, 3986, 4039
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			Sequence of trees begins:
1   o
4   (oo)
14  (o(oo))
16  (oooo)
49  ((oo)(oo))
56  (ooo(oo))
64  (oooooo)
86  (o(o(oo)))
106 (o(oooo))
196 (oo(oo)(oo))
224 (ooooo(oo))
256 (oooooooo)
301 ((oo)(o(oo)))
344 (ooo(o(oo)))
371 ((oo)(oooo))
424 (ooo(oooo))
454 (o((oo)(oo)))
526 (o(ooo(oo)))
622 (o(oooooo))
686 (o(oo)(oo)(oo))
784 (oooo(oo)(oo))
886 (o(o(o(oo))))
896 (ooooooo(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    etQ[n_]:=Or[n===1,With[{m=primeMS[n]},EvenQ@Length@m&&And@@etQ/@m]];
    Select[Range[10000],etQ]

A298538 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 187
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
7  ((oo))
8  (ooo)
9  ((o)(o))
11 ((((o))))
13 ((o(o)))
16 (oooo)
17 (((oo)))
19 ((ooo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
31 (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],SameQ@@MGweight/@primeMS[#]&]

A298205 Matula-Goebel numbers of rooted trees in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 18, 19, 20, 27, 30, 31, 37, 44, 45, 50, 61, 66, 67, 71, 75, 76, 99, 103, 110, 113, 114, 124, 125, 127, 148, 157, 165, 171, 186, 190, 193, 197, 222, 229, 242, 244, 268, 275, 279, 283, 284, 285, 310, 317, 331, 333, 353, 363, 366, 370, 379
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			Sequence of rooted trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
8  (ooo)
11 ((((o))))
12 (oo(o))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
27 ((o)(o)(o))
30 (o(o)((o)))
31 (((((o)))))
37 ((oo(o)))
44 (oo(((o))))
45 ((o)(o)((o)))
50 (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stQ[n_]:=Or[n===1,With[{m=primeMS[n]},MemberQ[{1,3},Length[m]]&&And@@stQ/@m]];
    Select[Range[10000],stQ]

A298479 Matula-Goebel numbers of rooted trees in which all positive outdegrees are different.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 16, 19, 24, 28, 32, 38, 42, 48, 52, 53, 56, 57, 64, 68, 74, 84, 96, 104, 106, 107, 112, 128, 131, 134, 136, 152, 159, 163, 168, 178, 192, 208, 212, 224, 228, 256, 262, 263, 272, 296, 304, 311, 318, 336, 356, 384, 393, 416, 446, 448, 456
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
7  ((oo))
8  (ooo)
12 (oo(o))
16 (oooo)
19 ((ooo))
24 (ooo(o))
28 (oo(oo))
32 (ooooo)
38 (o(ooo))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
53 ((oooo))
56 (ooo(oo))
57 ((o)(ooo))
64 (oooooo)
68 (oo((oo)))
74 (o(oo(o)))
84 (oo(o)(oo))
96 (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    doQ[n_]:=Or[n===1,UnsameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],doQ]

A298540 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of nodes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
7  ((oo))
10 (o((o)))
11 ((((o))))
13 ((o(o)))
14 (o(oo))
15 ((o)((o)))
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
22 (o(((o))))
23 (((o)(o)))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],UnsameQ@@MGweight/@primeMS[#]&]
Showing 1-7 of 7 results.