cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A298330 Number of ordered ways of writing n^2 as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 141, 742, 6120, 43888, 300232, 3074478, 28901797, 290411147, 3175037698, 34951274416, 399750066121, 4814421349467, 59532792202344, 768079420764884, 10247011240209066, 140144002390928732, 1978092111496441512, 28633995987157024399
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 17 2018

Keywords

Examples

			a(3) = 3 because we have [4, 4, 1], [4, 1, 4] and [1, 4, 4].
		

Crossrefs

Programs

  • Maple
    G:= (JacobiTheta3(0,x)-1)/2:
    f:= proc(n) local S; S:= series(G^n,x,n^2+1); coeff(S,x,n^2) end proc:
    map(f, [$0..25]); # Robert Israel, Dec 16 2024
  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n^2}], {n, 0, 23}]

Formula

a(n) = [x^(n^2)] (Sum_{k>=1} x^(k^2))^n.

A298672 Number of ordered ways of writing n^3 as a sum of n positive cubes.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 20, 0, 1121, 72828, 872640, 9037710, 118590450, 1743739426, 24407782672, 424735169040, 7802802463460, 135385454550288, 2823521345232834, 59332856029292241, 1238888844244575904, 28893281420537822022, 684650546073054870188, 16342742577592266281996
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2018

Keywords

Examples

			a(6) = 20 because we have [64, 64, 64, 8, 8, 8], [64, 64, 8, 64, 8, 8], [64, 64, 8, 8, 64, 8], [64, 64, 8, 8, 8, 64], [64, 8, 64, 64, 8, 8], [64, 8, 64, 8, 64, 8], [64, 8, 64, 8, 8, 64], [64, 8, 8, 64, 64, 8], [64, 8, 8, 64, 8, 64], [64, 8, 8, 8, 64, 64], [8, 64, 64, 64, 8, 8], [8, 64, 64, 8, 64, 8], [8, 64, 64, 8, 8, 64], [8, 64, 8, 64, 64, 8], [8, 64, 8, 64, 8, 64], [8, 64, 8, 8, 64, 64], [8, 8, 64, 64, 64, 8], [8, 8, 64, 64, 8, 64], [8, 8, 64, 8, 64, 64] and [8, 8, 8, 64, 64, 64].
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SeriesCoefficient[Sum[x^k^3, {k, 1, n}]^n, {x, 0, n^3}], {n, 1, 23}]]

Formula

a(n) = [x^(n^3)] (Sum_{k>=1} x^(k^3))^n.

A300446 Expansion of Product_{k>0} (Sum_{m>=0} x^(k*m^2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 8, 12, 12, 17, 23, 27, 32, 41, 52, 61, 77, 91, 110, 134, 159, 188, 228, 271, 314, 380, 444, 518, 612, 713, 832, 976, 1128, 1308, 1529, 1756, 2023, 2343, 2698, 3091, 3555, 4072, 4657, 5343, 6074, 6922, 7912, 8986, 10194, 11590, 13135, 14855
Offset: 0

Views

Author

Seiichi Manyama, May 11 2018

Keywords

Comments

Also the number of partitions of n in which each part occurs a square number (>=0) of times.

Examples

			n | Partitions of n in which each part occurs a square number (>=0) of times
--+-------------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1;
4 | 4 = 3+1 = 1+1+1+1;
5 | 5 = 4+1 = 3+2;
6 | 6 = 5+1 = 4+2 = 3+2+1 = 2+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 3+1+1+1+1;
8 | 8 = 7+1 = 6+2 = 5+3 = 5+2+1 = 4+3+1 = 4+1+1+1+1 = 2+2+2+2;
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&+[x^(k*j^2):j in [0..2*m]]): k in [1..2*m]]) ));  // G. C. Greubel, Oct 29 2018
  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else b(n, i-1); for j while
            i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2018
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 25 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(i=1, N, sum(j=0, sqrtint(N\i), x^(i*j^2)))) \\ Seiichi Manyama, Oct 28 2018
    

Formula

G.f.: Product_{k>=1} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Oct 25 2018

A298671 Number of ordered ways of writing n^3 as a sum of n nonnegative cubes.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 146, 4207, 26329, 257721, 3556495, 42685181, 631230381, 9409600499, 142557084957, 2781352245050, 52598395446786, 950288577530017, 20768368026768594, 448759012546543804, 9652848877533217174, 235179507693424886403, 5756272592837812726164, 140920987987840184113287
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2018

Keywords

Examples

			a(3) = 3 because we have [27, 0, 0], [0, 27, 0] and [0, 0, 27].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^k^3, {k, 0, n}]^n, {x, 0, n^3}], {n, 0, 23}]

Formula

a(n) = [x^(n^3)] (Sum_{k>=0} x^(k^3))^n.

A298858 Number of ordered ways of writing n-th triangular number as a sum of n nonzero triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 4, 11, 86, 777, 4670, 36075, 279482, 2345201, 21247326, 197065752, 1983741228, 20769081251, 228078253168, 2604226354265, 30880251148086, 379415992755572, 4818158748326064, 63116999199457944, 851467484377802094, 11811530978240316682, 168243449082524484856
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(4) = 4 because fourth triangular number is 10 and we have [3, 3, 3, 1], [3, 3, 1, 3], [3, 1, 3, 3] and [1, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k*(k+1)/2))^n.

A302863 a(n) = [x^(n^2)] (1 + theta_3(x))^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 6, 29, 165, 1203, 9763, 83877, 793049, 7903501, 83570177, 933697153, 10905583809, 133352809334, 1695473999478, 22354920990148, 305096197935075, 4296142551821184, 62336908825014452, 930284705538262688, 14255992611680074754, 224065160215526683317, 3607018540134004189466
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n^2.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/(2^n (1 - x)), {x, 0, n^2}], {n, 0, 22}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 0, n}]^n, {x, 0, n^2}], {n, 0, 22}]

A298938 Number of ordered ways of writing n^3 as a sum of n squares of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 4, 5, 686, 13942, 455988, 13617853, 454222894, 18323165948, 802161109047, 42149084452070, 2481730049781672, 157265294178424356, 10977302934685469078, 812821237985857557677, 64539935903231450294134, 5504599828399250884049308
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2018

Keywords

Examples

			a(4) = 5 because we have [64, 0, 0, 0], [16, 16, 16, 16], [0, 64, 0, 0], [0, 0, 64, 0] and [0, 0, 0, 64].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n^3}], {n, 0, 18}]

Formula

a(n) = [x^(n^3)] (Sum_{k>=0} x^(k^2))^n.

A298939 Number of ordered ways of writing n^3 as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 1, 4, 1, 286, 7582, 202028, 6473625, 226029577, 8338249868, 391526193477, 19990594900630, 1159906506684446, 74890158861242740, 5119732406649036418, 380146984328280974281, 30198665638519565614034, 2555354508318427693497565
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2018

Keywords

Examples

			a(3) = 4 because we have [25, 1, 1], [9, 9, 9], [1, 25, 1] and [1, 1, 25].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n^3}], {n, 0, 18}]

Formula

a(n) = [x^(n^3)] (Sum_{k>=1} x^(k^2))^n.

A299169 Number of ordered ways of writing n^4 as a sum of n fourth powers of nonnegative integers.

Original entry on oeis.org

1, 1, 2, 3, 4, 35, 12, 217, 8, 58473, 7930, 572891, 5556, 122985733, 5175184, 22299917655, 579379377, 743262257063, 56837361641571, 1395217574459461, 375984668290604635, 6891217627023943395, 1297848300143194333479, 26228516046396477884555, 3686440821146129098950735
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Examples

			a(6) = 12 because we have [1296, 0, 0, 0, 0, 0], [256, 256, 256, 256, 256, 16], [256, 256, 256, 256, 16, 256], [256, 256, 256, 16, 256, 256], [256, 256, 16, 256, 256, 256], [256, 16, 256, 256, 256, 256], [16, 256, 256, 256, 256, 256], [0, 1296, 0, 0, 0, 0], [0, 0, 1296, 0, 0, 0], [0, 0, 0, 1296, 0, 0], [0, 0, 0, 0, 1296, 0] and [0, 0, 0, 0, 0, 1296].
		

Crossrefs

Formula

a(n) = [x^(n^4)] (Sum_{k>=0} x^(k^4))^n.

Extensions

More terms from Jinyuan Wang, Dec 21 2021

A299031 Number of ordered ways of writing n-th triangular number as a sum of n squares of nonnegative integers.

Original entry on oeis.org

1, 1, 0, 3, 18, 60, 252, 1576, 10494, 64152, 458400, 3407019, 27713928, 225193982, 1980444648, 17626414158, 165796077562, 1593587604441, 15985672426992, 163422639872978, 1729188245991060, 18743981599820280, 208963405365941380, 2378065667103672024, 27742569814633730608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(3) = 3 because third triangular number is 6 and we have [4, 1, 1], [1, 4, 1] and [1, 1, 4].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=0} x^(k^2))^n.
Showing 1-10 of 12 results. Next