cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A032742 a(1) = 1; for n > 1, a(n) = largest proper divisor of n (that is, for n>1, maximum divisor d of n in range 1 <= d < n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

It seems that a(n) = Max_{j=n+1..2n-1} gcd(n,j). - Labos Elemer, May 22 2002
This is correct: No integer in the range [n+1, 2n-1] has n as its divisor, but certainly at least one multiple of the largest proper divisor of n will occur there (e.g., if it is n/2, then at n + (n/2)). - Antti Karttunen, Dec 18 2014
The slopes of the visible lines made by the points in the scatter plot are 1/2, 1/3, 1/5, 1/7, ... (reciprocals of primes). - Moosa Nasir, Jun 19 2022

Crossrefs

Maximal GCD of k positive integers with sum n for k = 2..10: this sequence (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).

Programs

  • Haskell
    a032742 n = n `div` a020639 n  -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011
    1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
  • Mathematica
    f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
    Join[{1},Divisors[#][[-2]]&/@Range[2,80]] (* Harvey P. Dale, Nov 29 2011 *)
    a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
    Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
  • PARI
    a(n)=if(n==1,1,n/factor(n)[1,1]) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else n//min(factorint(n))
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 21 2022
  • Scheme
    (define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
    

Formula

a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = A130064(n) / A006530(n). - Reinhard Zumkeller, May 05 2007
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
For all n >= 1, A276085(a(A276086(n))) = A276151(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Sum_{k>=1} A005867(k-1)/(prime(k)*A002110(k)) = 0.165049... . - Amiram Eldar, Nov 19 2022

Extensions

Definition clarified by N. J. A. Sloane, Dec 26 2022

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A302032 Discard the least ludic factor of n: a(n) = A255127(A260738(c) + r - 1, A260739(c)), where r = A260738(n), c = A260739(n) are the row and the column index of n in the table A255127; a(n) = 1 if c = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 5, 10, 9, 11, 1, 12, 1, 13, 7, 14, 1, 15, 7, 16, 15, 17, 7, 18, 1, 19, 11, 20, 1, 21, 1, 22, 21, 23, 1, 24, 19, 25, 19, 26, 1, 27, 11, 28, 27, 29, 11, 30, 1, 31, 13, 32, 11, 33, 1, 34, 33, 35, 1, 36, 13, 37, 17, 38, 1, 39, 35, 40, 39, 41, 1, 42, 31, 43, 35, 44, 1, 45, 1, 46, 45, 47, 13, 48, 1, 49, 23, 50
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

Original definition: A032742 analog for a nonstandard factorization process based on the Ludic sieve (A255127); Discard a single instance of the Ludic factor A272565(n) from n.
Like [A020639(n), A032742(n)] or [A020639(n), A302042(n)], also ordered pair [A272565(n), a(n)] is unique for each n. Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the Ludic factor (A272565) of each term gives a multiset of Ludic numbers (A003309) in ascending order, unique for each natural number n >= 1. Permutation pair A302025/A302026 maps between this "Ludic factorization" and the ordinary prime factorization of n. See also comments in A302034.
The definition of "discard the least ludic factor" is based on the table A255127 of the ludic sieve, where row r lists the (r+1)-th ludic number k = A003309(r+1), determined at the r-th step of the sieve, followed by the numbers crossed out at this step, namely, every k-th of the numbers remaining so far after k. If the number n is in row r = A260738(n), column c = A260739(n) of that table, then its least ludic factor is A272565(n) = A003309(r+1), the 1st entry of the r-th row. To discard that factor means to consider the number which is r-1 rows below the number c in that table, whence a(n) = A255127(A260738(c)+r-1, A260739(c)) - unless n is a ludic number, in which case a(n) = 1. - M. F. Hasler, Nov 06 2024

Examples

			Frem _M. F. Hasler_, Nov 06 2024: (Start)
For ludic numbers 1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, ..., a(n) = 1.
For n = 4, an even number, we have r = A260738(4) = 1: It is listed in row 1 of the table A255127, which lists all numbers that were crossed out at the first step: namely, the ludic number k = 2 and every other larger number. Also, in this row 1, the number 4 is in column c = A260739(4) = 2. Therefore, we apply r-1 = 0 times the map A269379 to c = 2, whence a(4) = 2.
The number n = 6 is also even and therefore listed in row r = 1, now in column c = 3, whence a(6) = 3. Similarly, a(8) = 4 and a(2k) = k for all k >= 1.
The number n = 9 was crossed out at the 2nd step (so r = A260738(9) = 2), when k = 3 was added to the ludic numbers and every 3rd remaining number crossed out; 9 was the first of these (after k = 3) so it is in column c = A260739(9) = 2. Now we have to apply r-1 = 1 times the map A269379 to c. That map yields the number which is located just below the argument (here c = 2) in the table A255127. Since 2 is a ludic number, in the first column, we get the next larger ludic number, 3, whence a(9) = 3.
The number 15 was the (c = 3)rd number to be crossed out at the (r = 2)nd step. Hence a(15) = A269379^{r-1} (c) = A269379(3) = 5 (again, the next larger ludic number).
The number 19 was the (c = 2)nd number to be crossed out at the (r = 3)rd step (when k = 5, its least ludic factor, was added to the list of ludic numbers). Hence a(19) = A269379^2(2) = A269379(3) = 5 again (skipping twice to the next larger ludic number).
(End)
To illustrate how this sequence allows one to compute the complete "ludic factorization" of a number, we consider n = 100.
For n = 100, its Ludic factor A272565(100) is 2, and we have seen that a(n) = 100/2 = 50.
For n = 50, its Ludic factor A272565(50) is 2 again, and again a(50) = 50/2 = 25.
Since n = 25 = A003309(1+9) is a ludic number, it equals its Ludic factor A272565(25) = 25. Because it appeared at the A260738(25) = 9th step, we apply A269379 eight times to the column index A260739(25) = 1, a fixed point, so a(25) = A269379^8(1) = 1.
Collecting the Ludic factors given by A272565 we get the multiset of factors: [2, 2, 25] = [A003309(1+1), A003309(1+1), A003309(1+9)]. By definition, A302026(100) = prime(1)*prime(1)*prime(9) = 2*2*23 = 92, the product of the corresponding primes.
If we start from n = 100, iterating the map n -> A302034(n) [instead of A302032] and apply A272565 to each term obtained we get just a single instance of each Ludic factor: [2, 25]. Then by applying A302035 to the same terms we get the corresponding exponents (multiplicities) of those factors: [2, 1].
		

Crossrefs

Cf. the following analogs A302031 (omega), A302037 (bigomega).
Cf. also A032742, A302042.

Programs

  • PARI
    \\ Assuming A269379 and its inverse A269380 have been precomputed, then the following is reasonably fast:
    A302032(n) = if(1==n,n,my(k=0); while((n%2), n = A269380(n); k++); n = n/2; while(k>0, n = A269379(n); k--); (n))

Formula

For n > 1, a(n) = A269379^r'(A260739(n)), where r' = A260738(n)-1 and A269379^r'(n) stands for applying r' times the map x -> A269379(x), starting from x = n.
a(n) = A302025(A032742(A302026(n))).
From M. F. Hasler, Nov 06 2024: (Start)
a(n) = 1 if n is a ludic number, i.e., in A003309. Otherwise:
a(n) = A255127(A260738(c) + r - 1, A260739(c)), with r = A260738(n), c = A260739(n).
In particular, a(2n) = n for all n. (End)

A302025 Permutation of natural numbers mapping ordinary factorization to "Ludic factorization": a(1) = 1, a(2n) = 2*a(n), a(A003961(n)) = A269379(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 20, 27, 22, 25, 24, 19, 26, 21, 28, 29, 30, 37, 32, 39, 34, 35, 36, 41, 46, 63, 40, 43, 54, 47, 44, 33, 50, 53, 48, 31, 38, 75, 52, 61, 42, 65, 56, 99, 58, 67, 60, 71, 74, 57, 64, 95, 78, 77, 68, 135, 70, 83, 72, 89, 82, 51, 92, 59, 126, 91, 80, 45, 86, 97, 108, 155, 94, 147, 88
Offset: 1

Views

Author

Antti Karttunen, Apr 03 2018

Keywords

Comments

See comments and examples in A302032 to see how Ludic factorization proceeds.

Crossrefs

Cf. A302026 (inverse permutation).
Cf. A156552, A250245, A269171, A269387 (similar or related permutations).

Programs

Formula

a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A269379(a(A064989(2n+1))).
a(n) = A269171(A250245(n)).
a(n) = A269387(A156552(n)).

A302034 A028234 analog for a factorization process based on the Ludic sieve (A255127); Discard all instances of the (smallest) Ludic factor A272565(n) from n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 9, 1, 5, 1, 11, 1, 3, 1, 13, 7, 7, 1, 15, 1, 1, 5, 17, 7, 9, 1, 19, 11, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 25, 19, 13, 1, 27, 1, 7, 7, 29, 11, 15, 1, 31, 13, 1, 11, 33, 1, 17, 5, 35, 1, 9, 1, 37, 17, 19, 1, 39, 7, 5, 11, 41, 1, 21, 1, 43, 35, 11, 1, 45, 1, 23, 1, 47, 13, 3, 1, 49, 23, 25, 1, 51, 13, 13, 19
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Comments

Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the Ludic factor (A272565) of each term gives a sequence of distinct Ludic numbers (A003309) in ascending order, while applying A302035 to the same terms gives the corresponding "exponents" of these Ludic factors in this nonstandard "Ludic factorization of n", unique for each natural number n >= 1. Permutation pair A302025/A302026 maps between this Ludic factorization and the ordinary prime factorization of n. See also comments and examples in A302032.

Crossrefs

Cf. A302036 (gives the positions of 1's).
Cf. also A028234, A302044.

Programs

  • PARI
    \\ Assuming A269379 and its inverse A269380 have been precomputed, then the following is reasonably fast:
    A302034(n) = if(1==n,n,my(k=0); while((n%2), n = A269380(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A269379(n); k--); (n));

Formula

For n > 1, a(n) = A269379^(r)(A000265(A260739(n))), where r = A260738(n)-1 and A269379^(r)(n) stands for applying r times the map x -> A269379(x), starting from x = n.
a(n) = A302025(A028234(A302026(n))).

A302031 An omega (A001221) analog based on the Ludic sieve (A255127): a(1) = 0; for n > 1, a(n) = 1 + a(A302034(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2018

Keywords

Crossrefs

Cf. A302036 (positions of terms < 2).
Differs from similar A302041 for the first time at n=59, where a(59) = 2, while A302041(59) = 1.

Programs

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A302034(n)).
a(n) = A001221(A302026(n)).
a(n) = A069010(A269388(n)).

A302037 A bigomega (A001222) analog based on the Ludic sieve (A255127): a(1) = 0; for n > 1, a(n) = 1 + a(A302032(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 2, 3, 3, 2, 1, 4, 1, 2, 2, 3, 1, 3, 2, 5, 3, 2, 2, 4, 1, 3, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 3, 2, 3, 3, 1, 3, 2, 4, 3, 2, 2, 4, 1, 3, 2, 6, 2, 4, 1, 3, 4, 3, 1, 5, 2, 2, 2, 4, 1, 3, 3, 5, 3, 2, 1, 5, 3, 2, 3, 4, 1, 5, 1, 3, 5, 2, 2, 6, 1, 4, 2, 3, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Crossrefs

Cf. A003309 (gives the positions of terms <= 1), A302038 (gives the positions of 2's).
Cf. A302031 (an omega-analog), A253557.

Programs

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A302032(n)).
a(n) = A000120(A269388(n)).
a(n) = A001222(A302026(n)).

A302035 a(1) = 0, for n > 1, a(n) = A001511(A260739(n)); Number of instances of (the smallest) Ludic factor A272565(n) in n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 4, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 4, 2, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 5, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Comments

An A067029 analog for "Ludic factorization": iterating the map n -> A302034(n) until 1 is reached, and taking the Ludic factor (A272565) of each term gives a sequence of distinct Ludic numbers (A003309) in ascending order, while applying this function (A302035) to those terms gives the corresponding "exponents" of those Ludic factors, that is, the count of consecutive occurrences of each when iterating the map n -> A302032(n), which gives the same factors with repetitions. Permutation pair A302025/A302026 maps between the Ludic factorization and the ordinary prime factorization of n. See also comments and examples in A302032.

Crossrefs

Formula

a(1) = 0; for n > 1, a(n) = A001511(A260739(n)).
For n > 1, a(n) = A302025(A067029(A302026(n))).
Showing 1-9 of 9 results.