cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A355743 Numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 41, 45, 49, 51, 53, 55, 57, 59, 63, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 105, 109, 115, 119, 121, 123, 125, 127, 131, 133, 135, 147, 153, 155, 157, 159, 161, 165, 171, 175, 177, 179, 187
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions into constant multisets, where the multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  31: {11}
  33: {2,5}
  35: {3,4}
  41: {13}
  45: {2,2,3}
		

Crossrefs

The multiplicative version is A000688, strict A050361, coprime A354911.
The case of only primes (not all prime-powers) is A076610, strict A302590.
Allowing prime index 1 gives A302492.
These are the products of elements of A302493.
Requiring n to be a prime-power gives A302601.
These are the positions of 1's in A355741.
The squarefree case is A356065.
The complement is A356066.
A001222 counts prime-power divisors.
A023894 counts ptns into prime-powers, strict A054685, with 1's A023893.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@PrimePowerQ/@primeMS[#]&]

A302492 Products of any power of 2 with prime numbers of prime-power index, i.e., prime numbers p of the form p = prime(q^k), for q prime, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
  • PARI
    ok(n)={!#select(p->p<>2&&!isprimepower(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

A356065 Squarefree numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
		

Crossrefs

The multiplicative version (factorizations) is A050361, non-strict A000688.
Heinz numbers of the partitions counted by A054685, with 1's A106244, non-strict A023894, non-strict with 1's A023893.
Counting twice-partitions of this type gives A279786, non-strict A279784.
Counting twice-factorizations gives A295935, non-strict A296131.
These are the odd products of distinct elements of A302493.
Allowing prime index 1 gives A302496, non-strict A302492.
The case of primes (instead of prime-powers) is A302590, non-strict A076610.
These are the squarefree positions of 1's in A355741.
This is the squarefree case of A355743, complement A356066.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]

Formula

Intersection of A005117 and A355743.

A356064 Numbers with a prime index other than 1 that is not a prime-power. Complement of A302492.

Original entry on oeis.org

13, 26, 29, 37, 39, 43, 47, 52, 58, 61, 65, 71, 73, 74, 78, 79, 86, 87, 89, 91, 94, 101, 104, 107, 111, 113, 116, 117, 122, 129, 130, 137, 139, 141, 142, 143, 145, 146, 148, 149, 151, 156, 158, 163, 167, 169, 172, 173, 174, 178, 181, 182, 183, 185, 188, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are numbers divisible by a prime number not of the form prime(q^k) where q is a prime number and k >= 1.

Examples

			The terms together with their prime indices begin:
   13: {6}
   26: {1,6}
   29: {10}
   37: {12}
   39: {2,6}
   43: {14}
   47: {15}
   52: {1,1,6}
   58: {1,10}
   61: {18}
   65: {3,6}
   71: {20}
   73: {21}
   74: {1,12}
   78: {1,2,6}
   79: {22}
   86: {1,14}
   87: {2,10}
		

Crossrefs

Heinz numbers of the partitions counted by A023893.
Allowing prime index 1 gives A356066.
A000688 counts factorizations into prime-powers, strict A050361.
A001222 counts prime-power divisors.
A023894 counts partitions into prime-powers, strict A054685.
A034699 gives the maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.
A355743 = numbers whose prime indices are prime-powers, squarefree A356065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@PrimePowerQ/@DeleteCases[primeMS[#],1]&]

A356066 Numbers with a prime index that is not a prime-power. Complement of A355743.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 96, 98, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
		

Crossrefs

The complement is A355743, counted by A023894.
The squarefree complement is A356065, counted by A054685.
Allowing prime index 1 gives A356064, complement A302492.
A000688 counts factorizations into prime-powers, strict A050361.
A001222 counts prime-power divisors.
A034699 gives the maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@PrimePowerQ/@primeMS[#]&]

Formula

Union of A299174 and A356064.

A302496 Products of distinct primes of prime-power index.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 38, 41, 42, 46, 51, 53, 55, 57, 59, 62, 66, 67, 69, 70, 77, 82, 83, 85, 93, 95, 97, 102, 103, 105, 106, 109, 110, 114, 115, 118, 119, 123, 127, 131, 133, 134, 138, 154, 155, 157, 159
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant-multiset systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
10: {{},{2}}
11: {{3}}
14: {{},{1,1}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
35: {{2},{1,1}}
38: {{},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[nn],Or[#===1,SquareFreeQ[#]&&And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
  • PARI
    is(n) = if(bigomega(n)!=omega(n), return(0), my(f=factor(n)[, 1]~); for(k=1, #f, if(!isprimepower(primepi(f[k])) && primepi(f[k])!=1, return(0)))); 1 \\ Felix Fröhlich, Apr 10 2018

A302498 Numbers that are a power of a prime number whose prime index is itself a power of a prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 41, 49, 53, 59, 64, 67, 81, 83, 97, 103, 109, 121, 125, 127, 128, 131, 157, 179, 191, 211, 227, 241, 243, 256, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 512, 529, 547, 563
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is in the sequence because 49 = prime(prime(1)^2)^2.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant constant-multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@(Or[#===1,PrimePowerQ[#]]&/@PrimePi/@FactorInteger[#][[All,1]])]&]
  • PARI
    ok(n)={my(p); n == 1 || (isprimepower(n, &p) && (p == 2 || isprimepower(primepi(p))))} \\ Andrew Howroyd, Aug 26 2018

A383309 Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The systems with these MM-numbers begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
  67: {{8}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  97: {{3,3}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just a common sum we have A326534.
For just constant blocks we have A355743.
Numbers without a factorization of this type are listed by A381871, counted by A381993.
The multiplicative version is A381995.
This is the odd case of A382215.
For strict instead of constant blocks we have A382304.
A001055 counts factorizations, strict A045778.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]

Formula

Equals A326534 /\ A355743.
Showing 1-9 of 9 results.