cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106611 a(n) = numerator of n/(n+10).

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 13, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 39, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 26, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 13, 33, 67, 34, 69, 7, 71, 36, 73, 37, 15, 38, 77, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n,m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 17 2019

Crossrefs

Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109051(n)/10.
Dirichlet g.f.: zeta(s-1)*(1 - 4/5^s - 1/2^s + 4/10^s).
Multiplicative with a(2^e) = 2^max(0,e-1), a(5^e) = 5^max(0,e-1), a(p^e) = p^e if p = 3 or p >= 7. (End)
From Peter Bala, Feb 17 2019: (Start)
a(n) = numerator(n/((n + 2)*(n + 5))).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, ...] is a purely periodic sequence of period 10. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 10} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 4*x^5/(1 - x^5)^2 + 4*x^10/(1 - x^10)^2.
(End)
Sum_{k=1..n} a(k) ~ (63/200) * n^2. - Amiram Eldar, Nov 25 2022

A303369 Numbers equal to the determinant of a circulant matrix based on the base-9 digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 104, 126, 130, 468, 2035, 8052, 8421, 12100, 18788, 21296, 60736, 90155, 109135, 119795, 123201, 137605, 147095, 160965, 199728, 457856, 523809, 697334, 2958176, 3652360, 4725030, 5331625, 6825024, 7014400, 7694336, 9376133, 14012352
Offset: 1

Views

Author

M. F. Hasler, May 05 2018

Keywords

Comments

Base 9 variant of A219327. See A303366 .. A303368 for other bases.

Examples

			104 is in the sequence because 104 = 125[9] (in base 9) and 104 = det [1,2,5; 5,1,2; 2,5,1].
		

Crossrefs

Cf. A303366 (base 6), A303367 (base 7), A303368 (base 8), A219327 (base 10).

Programs

  • PARI
    (c(v)=abs(matdet(matrix(#v,#v,i,j,v[(j-i)%#v+1]))));for(n=1,oo,n==c(digits(n,9))&&print1(n","))

Extensions

a(31)-a(39) from Giovanni Resta, May 07 2018

A303368 Numbers equal to the determinant of a circulant matrix based on the base-8 digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 21, 133, 432, 525, 1200, 1456, 1904, 4774, 24583, 281048, 289820, 333293, 420239, 428752, 430686, 437554, 500380, 500888, 736600, 941578, 984377, 1027176, 1069975, 1112774, 1155573, 1662216, 1776201, 2087008, 3212235, 7928375, 8131725
Offset: 1

Views

Author

M. F. Hasler, May 05 2018

Keywords

Comments

Base 8 variant of A219327.

Crossrefs

Cf. A303367 (base 7), A303369 (base 9), A219327 (base 10).

Programs

  • PARI
    (c(v)=abs(matdet(matrix(#v,#v,i,j,v[(j-i)%#v+1]))));for(n=1,oo,n==c(digits(n,8))&&print1(n","))

Extensions

a(33)-a(38) from Giovanni Resta, May 07 2018

A303366 Numbers equal to the determinant of a circulant matrix based on the base-6 digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 320, 1936, 2761, 3421, 3732, 4043, 4354, 1697296, 2121620, 2970268, 3076349, 5222639, 8979475, 41657517, 63095140, 110416495, 488553143, 646839439, 1066194997, 1209597525, 1803581465, 1861934400, 2019744271, 2691271467, 2842031031, 3052726590, 7100897730, 10806417998
Offset: 1

Views

Author

M. F. Hasler, May 05 2018

Keywords

Comments

Base 6 variant of A219327. See A303367 .. A303369 for other bases.

Examples

			320 is in the sequence because 320 = 1252[6] (in base 6) and 320 = det [1,2,5,2; 2,1,2,5; 5,2,1,2; 2,5,2,1].
		

Crossrefs

Cf. A303367 (base 7), A303368 (base 8), A303369 (base 9), A219327 (base 10).

Programs

  • Mathematica
    Select[Range[5000],#==Det[NestList[RotateRight,IntegerDigits[#,6],IntegerLength[#,6]-1]]&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Mar 11 2024 *)
  • PARI
    (c(v)=abs(matdet(matrix(#v,#v,i,j,v[(j-i)%#v+1]))));for(n=1,oo,n==c(digits(n,6))&&print1(n","))

Extensions

a(13)-a(33) from Giovanni Resta, May 07 2018
Showing 1-4 of 4 results.