A327520 Number of factorizations of the n-th stable number A316476(n) into stable numbers > 1.
1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 5, 1, 1, 1, 2, 3, 1, 1, 7, 2, 2, 1, 1, 1, 4, 1, 2, 2, 1, 2, 1, 1, 11, 1, 2, 1, 1, 4, 2, 1, 5, 1, 2, 1, 2, 2, 2, 1, 4, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 15, 1, 7, 1, 1, 2, 2, 2, 1, 1, 4, 2, 1, 2, 1, 5, 1, 2, 1, 4, 2, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The a(26) = 4 factorizations of 45 into stable numbers: (3*3*5) (3*15) (5*9) (45) The a(201) = 11 multiset partitions of the prime indices of 495 into stable multisets: {{2},{2},{3},{5}} {{2},{2},{3,5}} {{2},{3},{2,5}} {{2},{5},{2,3}} {{2},{2,3,5}} {{3},{2,2},{5}} {{3},{2,2,5}} {{2,2},{3,5}} {{5},{2,2,3}} {{2,3},{2,5}} {{2,2,3,5}}
Links
Programs
-
Mathematica
nn=100; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; y=Select[Range[nn],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]; Table[Length[facsusing[Rest[y],n]],{n,y}]
Comments