A349331
G.f. A(x) satisfies A(x) = 1 + x * A(x)^4 / (1 - x).
Original entry on oeis.org
1, 1, 5, 31, 219, 1678, 13570, 114014, 985542, 8708099, 78298727, 714105907, 6590200215, 61427125994, 577456943614, 5468604044500, 52122539760992, 499613409224137, 4813105582181533, 46576519080852235, 452545041339982871, 4413071971740021275, 43177663974461532959
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^4/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..22); # Alois P. Heinz, Nov 15 2021
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x A[x]^4/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 22}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^4, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A349362
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^6 / (1 + x).
Original entry on oeis.org
1, 1, 5, 40, 370, 3740, 40006, 445231, 5102165, 59799505, 713496815, 8637432580, 105826926716, 1309793896431, 16351672606365, 205665994855320, 2603696877136060, 33151784577226295, 424258396639960591, 5454120586840761631, 70402732493668027775
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^6/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^6/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
A349361
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^5 / (1 + x).
Original entry on oeis.org
1, 1, 4, 26, 194, 1581, 13625, 122120, 1126780, 10631460, 102104845, 994855179, 9809872626, 97710157154, 981636609906, 9935473707279, 101214412755647, 1036991125300748, 10678412226507032, 110459290208905008, 1147261657267290037
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^5/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^5/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]
A349364
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^8 / (1 + x).
Original entry on oeis.org
1, 1, 7, 77, 987, 13839, 205513, 3176747, 50578445, 823779286, 13660621282, 229865812134, 3915003083306, 67361559577578, 1169138502393414, 20444573270374050, 359858503314494318, 6370677542063831319, 113359050598950194801, 2026309136822686950087
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^8/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..19); # Alois P. Heinz, Nov 15 2021
-
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^8/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
A349363
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^7 / (1 + x).
Original entry on oeis.org
1, 1, 6, 57, 629, 7589, 96942, 1288729, 17643920, 247089010, 3522891561, 50964747400, 746241617226, 11038241689188, 164696773030055, 2475832560808858, 37462189433509758, 570112127356828846, 8720472842436039280, 133997057207982607092, 2067402314984991892461
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
A317134
G.f.: Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(2*(n+1)).
Original entry on oeis.org
1, 2, 9, 44, 236, 1336, 7862, 47608, 294720, 1856748, 11865684, 76731572, 501176237, 3301501694, 21909634763, 146337236580, 982962605577, 6635968279354, 45001173711683, 306406562117884, 2093909763907401, 14356806252396614, 98735015302171955, 680906548260420320, 4707709357806093085, 32625093782844333722, 226588405850230665429, 1576882804780751603092
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 44*x^3 + 236*x^4 + 1336*x^5 + 7862*x^6 + 47608*x^7 + 294720*x^8 + 1856748*x^9 + 11865684*x^10 + ...
such that
A(x) = 1/(1+x)^2 + 4*x/(1+x)^4 + 22*x^2/(1+x)^6 + 140*x^3/(1+x)^8 + 969*x^4/(1+x)^10 + 7084*x^5/(1+x)^12 + ... + A002293(n+1)*x^n/(1+x)^(2*(n+1)) + ...
RELATED SERIES.
Series_Reversion( x*A(x) ) = 4*x/((1+x)^2 + sqrt( (1+x)^4 - 4*x ))^2 = x - 2*x^2 - x^3 + 6*x^4 + 3*x^5 - 20*x^6 - 18*x^7 + 74*x^8 + 111*x^9 - 278*x^10 - 657*x^11 + 980*x^12 + 3739*x^13 + ...
which equals the sum:
Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(4*(n+1)).
The square-root of the g.f. is an integer series:
sqrt(A(x)) = 1 + x + 4*x^2 + 18*x^3 + 92*x^4 + 504*x^5 + 2897*x^6 + 17235*x^7 + 105233*x^8 + 655687*x^9 + 4152461*x^10 + ... + A317135(n)*x^n + ...
which equals the sum:
Sum_{n>=0} binomial(4*n+2, n)/(2*n+1) * x^(n+1)/(1+x)^(2*n+1).
-
Rest[CoefficientList[InverseSeries[Series[4*x/((1 + x)^2 + Sqrt[(1 + x)^4 - 4*x])^2, {x, 0, 30}], x], x]](* Vaclav Kotesovec, Jul 22 2018 *)
-
{a(n) = my(A = sum(m=0, n, binomial(4*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(2*(m+1)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A = (1/x) * serreverse( 4*x/((1+x)^2 + sqrt( (1+x)^4 - 4*x + x*O(x^n)))^2 )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A365224
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)^5).
Original entry on oeis.org
1, 1, 3, 10, 30, 56, -167, -2813, -21515, -126135, -601812, -2179039, -3455504, 32238155, 430944400, 3334419890, 20083350422, 97094186751, 338485665435, 274332822425, -8491831747320, -97735154210032, -732963337489636, -4341176221239330
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(5*n-k+1, k)*binomial(n-1, n-k)/(5*n-k+1));
A369156
Expansion of (1/x) * Series_Reversion( x / ((1+x)^4-x^4) ).
Original entry on oeis.org
1, 4, 22, 140, 968, 7064, 53544, 417456, 3326304, 26967040, 221733568, 1844667136, 15498804480, 131325820032, 1120928667264, 9628975973120, 83181462291968, 722175844640768, 6297942966129664, 55143987250677760, 484589284705202176, 4272491458636754944
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4-x^4))/x)
-
a(n) = sum(k=0, n\4, (-1)^k*binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);
A377458
G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 - A(x) + A(x)^4).
Original entry on oeis.org
1, 1, 1, 4, 7, 29, 61, 256, 596, 2507, 6247, 26197, 68652, 286232, 780508, 3231060, 9102590, 37392935, 108279767, 441342883, 1308552478, 5292781266, 16018989626, 64315663716, 198213843417, 790252270626, 2474924176566, 9802205324516, 31142246753638
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2*n-4*k, n-k-1))/n);
A377706
G.f. A(x) satisfies A(x) = 1 + x/A(x)^3 * (1 - A(x) + A(x)^4).
Original entry on oeis.org
1, 1, 0, 3, -6, 28, -105, 444, -1897, 8338, -37305, 169471, -779537, 3623500, -16993990, 80316081, -382136133, 1828896726, -8798796709, 42528048930, -206413678447, 1005623593109, -4916026689088, 24106987842416, -118551374861525, 584526569727010, -2888995759466360
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(n-4*k, n-k-1))/n);
Showing 1-10 of 14 results.
Comments