A349332
G.f. A(x) satisfies A(x) = 1 + x * A(x)^5 / (1 - x).
Original entry on oeis.org
1, 1, 6, 46, 406, 3901, 39627, 418592, 4551672, 50610692, 572807157, 6577068383, 76426719408, 897078662538, 10620634999318, 126676885170703, 1520759193166329, 18361269213121164, 222814883564042704, 2716125963857227904, 33244557641365865109
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^5/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^5/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^5, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A317133
G.f.: Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1).
Original entry on oeis.org
1, 3, 15, 85, 526, 3438, 23358, 163306, 1167235, 8490513, 62648451, 467769217, 3527692298, 26832220834, 205601792340, 1585604105312, 12297768490441, 95861469636203, 750611119223931, 5901214027721577, 46564408929573723, 368644188180241449, 2927350250765841801, 23310167641788680947, 186089697960587977233, 1489085453187335910243
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 85*x^3 + 526*x^4 + 3438*x^5 + 23358*x^6 + 163306*x^7 + 1167235*x^8 + 8490513*x^9 + 62648451*x^10 + ...
such that
A(x) = 1/(1+x) + 4*x/(1+x)^2 + 22*x^2/(1+x)^3 + 140*x^3/(1+x)^4 + 969*x^4/(1+x)^5 + 7084*x^5/(1+x)^6 + ... + A002293(n+1)*x^n/(1+x)^(n+1) + ...
RELATED SERIES.
Series_Reversion( x*A(x) ) = x/((1+x)^4 - x) = x - 3*x^2 + 3*x^3 + 5*x^4 - 22*x^5 + 27*x^6 + 28*x^7 - 163*x^8 + 235*x^9 + 134*x^10 + ...
which equals the sum:
Sum_{n>=0} binomial(n+1, n)/(n+1) * x^(n+1)/(1+x)^(4*(n+1)).
-
Rest[CoefficientList[InverseSeries[Series[x/((1 + x)^4 - x), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jul 22 2018 *)
-
{a(n) = my(A = sum(m=0, n, binomial(4*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(1*(m+1)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A = (1/x) * serreverse( x/((1+x)^4 - x +x*O(x^n)) ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A349362
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^6 / (1 + x).
Original entry on oeis.org
1, 1, 5, 40, 370, 3740, 40006, 445231, 5102165, 59799505, 713496815, 8637432580, 105826926716, 1309793896431, 16351672606365, 205665994855320, 2603696877136060, 33151784577226295, 424258396639960591, 5454120586840761631, 70402732493668027775
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^6/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^6/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
A349364
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^8 / (1 + x).
Original entry on oeis.org
1, 1, 7, 77, 987, 13839, 205513, 3176747, 50578445, 823779286, 13660621282, 229865812134, 3915003083306, 67361559577578, 1169138502393414, 20444573270374050, 359858503314494318, 6370677542063831319, 113359050598950194801, 2026309136822686950087
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^8/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..19); # Alois P. Heinz, Nov 15 2021
-
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^8/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
A349363
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^7 / (1 + x).
Original entry on oeis.org
1, 1, 6, 57, 629, 7589, 96942, 1288729, 17643920, 247089010, 3522891561, 50964747400, 746241617226, 11038241689188, 164696773030055, 2475832560808858, 37462189433509758, 570112127356828846, 8720472842436039280, 133997057207982607092, 2067402314984991892461
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
A371496
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^4.
Original entry on oeis.org
1, 4, 22, 156, 1233, 10420, 92120, 841376, 7876616, 75177492, 728784802, 7156081536, 71024862452, 711383912672, 7181295333306, 72989746391780, 746308443708928, 7671359593228624, 79226966456758424, 821691132077059740, 8554576791134761387
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));
A365225
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 4, 24, 169, 1301, 10605, 89963, 785943, 7023148, 63892489, 589771350, 5509967214, 52001860377, 495048989686, 4748144843341, 45838627944500, 445072967642096, 4343508043479012, 42581707009501604, 419158119684986781, 4141270208611084284
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*n+3*k+1, k)*binomial(n-1, n-k)/(2*n+3*k+1));
A365226
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^6).
Original entry on oeis.org
1, 1, 4, 20, 107, 577, 3010, 14429, 56640, 98020, -1297568, -21901213, -232421636, -2081040375, -16862259358, -126674303915, -887771735205, -5768588276072, -33971373570320, -170393703586467, -576946353425125, 1101490168511323, 47657979846612682
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));
A369157
Expansion of (1/x) * Series_Reversion( x / ((1+x)^5-x^5) ).
Original entry on oeis.org
1, 5, 35, 285, 2530, 23750, 231850, 2329850, 23940475, 250394375, 2656849375, 28529354375, 309445377750, 3385369628750, 37312228370000, 413913023212500, 4617886656665625, 51781448191328125, 583266654383859375, 6596645477096428125, 74881064169289121875
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^5-x^5))/x)
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n+1, k)*binomial(5*n-5*k+5, n-5*k))/(n+1);
A371544
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1+x))^5.
Original entry on oeis.org
1, 5, 30, 220, 1775, 15206, 135745, 1248900, 11758240, 112736305, 1096960024, 10804727805, 107520029780, 1079346767060, 10917110317185, 111149886462926, 1138205538056395, 11715403351807780, 121137702435412040, 1257720947476195045, 13106870738511517659
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(5*k+5, k)/(k+1));
Showing 1-10 of 10 results.
Comments