cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A317133 G.f.: Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1).

Original entry on oeis.org

1, 3, 15, 85, 526, 3438, 23358, 163306, 1167235, 8490513, 62648451, 467769217, 3527692298, 26832220834, 205601792340, 1585604105312, 12297768490441, 95861469636203, 750611119223931, 5901214027721577, 46564408929573723, 368644188180241449, 2927350250765841801, 23310167641788680947, 186089697960587977233, 1489085453187335910243
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2018

Keywords

Comments

Note that: binomial(4*(n+1), n)/(n+1) = A002293(n+1) for n >= 0, where F(x) = Sum_{n>=0} A002293(n)*x^n satisfies F(x) = 1 + x*F(x)^4.
Compare the g.f. to:
(C1) M(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(n+1) where M(x) = 1 + M(x) + M(x)^2 is the g.f. of Motzkin numbers (A001006).
(C2) 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
(C3) If S(x,p,q) = Sum_{n>=0} binomial(p*(n+1),n)/(n+1) * x^n/(1+x)^(q*(n+1)), then Series_Reversion ( x*S(x,p,q) ) = x*S(x,q,p) holds for fixed p and q.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 85*x^3 + 526*x^4 + 3438*x^5 + 23358*x^6 + 163306*x^7 + 1167235*x^8 + 8490513*x^9 + 62648451*x^10 + ...
such that
A(x) = 1/(1+x) + 4*x/(1+x)^2 + 22*x^2/(1+x)^3 + 140*x^3/(1+x)^4 + 969*x^4/(1+x)^5 + 7084*x^5/(1+x)^6 + ... + A002293(n+1)*x^n/(1+x)^(n+1) + ...
RELATED SERIES.
Series_Reversion( x*A(x) )  =  x/((1+x)^4 - x)  =  x - 3*x^2 + 3*x^3 + 5*x^4 - 22*x^5 + 27*x^6 + 28*x^7 - 163*x^8 + 235*x^9 + 134*x^10 + ...
which equals the sum:
Sum_{n>=0} binomial(n+1, n)/(n+1) * x^(n+1)/(1+x)^(4*(n+1)).
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/((1 + x)^4 - x), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jul 22 2018 *)
  • PARI
    {a(n) = my(A = sum(m=0, n, binomial(4*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(1*(m+1)))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/((1+x)^4 - x +x*O(x^n)) ) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x))^4 / (1+x).
(2) A(x) = (1/x) * Series_Reversion( x/((1+x)^4 - x) ).
(3) A(x) = Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1).
a(n) ~ 229^(n + 3/2) / (sqrt(Pi) * 2^(7/2) * n^(3/2) * 3^(3*n + 9/2)). - Vaclav Kotesovec, Jul 22 2018
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+1,k) * binomial(4*n-4*k+4,n-k). - Seiichi Manyama, Mar 23 2024

A349333 G.f. A(x) satisfies A(x) = 1 + x * A(x)^6 / (1 - x).

Original entry on oeis.org

1, 1, 7, 64, 678, 7836, 95838, 1219527, 15979551, 214151601, 2921712145, 40444378948, 566634504256, 8019501351103, 114484746457075, 1646614155398872, 23837794992712680, 347081039681365623, 5079306905986689309, 74670702678690897079, 1102218694940440851877
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^6/(1-x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^6/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^6, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(6*k,k) / (5*k+1).
a(n) ~ 49781^(n + 1/2) / (72 * sqrt(3*Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Nov 15 2021

A349361 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^5 / (1 + x).

Original entry on oeis.org

1, 1, 4, 26, 194, 1581, 13625, 122120, 1126780, 10631460, 102104845, 994855179, 9809872626, 97710157154, 981636609906, 9935473707279, 101214412755647, 1036991125300748, 10678412226507032, 110459290208905008, 1147261657267290037
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^5/(1+x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^5/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(5*k,k) / (4*k+1).
a(n) = (-1)^(n+1)*F([6/5, 7/5, 8/5, 9/5, 1-n], [3/2, 7/4, 2, 9/4], 5^5/2^8), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
From Vaclav Kotesovec, Nov 17 2021: (Start)
a(n) ~ 2869^(n + 1/2) / (25 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)).
Recurrence: 8*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*a(n) = 3*(615*n^4 - 718*n^3 - 275*n^2 + 618*n - 200)*a(n-1) + 4*(n-2)*(2485*n^3 - 6879*n^2 + 6524*n - 2040)*a(n-2) + 2*(n-3)*(n-2)*(8095*n^2 - 23517*n + 18092)*a(n-3) + 12*(n-4)*(n-3)*(n-2)*(935*n - 1838)*a(n-4) + 2869*(n-5)*(n-4)*(n-3)*(n-2)*a(n-5). (End)

A349364 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^8 / (1 + x).

Original entry on oeis.org

1, 1, 7, 77, 987, 13839, 205513, 3176747, 50578445, 823779286, 13660621282, 229865812134, 3915003083306, 67361559577578, 1169138502393414, 20444573270374050, 359858503314494318, 6370677542063831319, 113359050598950194801, 2026309136822686950087
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Comments

In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(m*k,k) / ((m-1)*k+1) ~ (m-1)^(m/2 - 2) * (m^m/(m-1)^(m-1) - 1)^(n + 1/2) / (sqrt(2*Pi) * m^((m-1)/2) * n^(3/2)). - Vaclav Kotesovec, Nov 17 2021

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^8/(1+x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..19);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^8/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(8*k,k) / (7*k+1).
a(n) = (-1)^(n+1)*F([9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, 1-n], [9/7, 10/7, 11/7, 12/7, 13/7, 2, 15/7], 8^8/7^7), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
a(n) ~ 15953673^(n + 1/2) / (2048 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Nov 17 2021

A349363 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^7 / (1 + x).

Original entry on oeis.org

1, 1, 6, 57, 629, 7589, 96942, 1288729, 17643920, 247089010, 3522891561, 50964747400, 746241617226, 11038241689188, 164696773030055, 2475832560808858, 37462189433509758, 570112127356828846, 8720472842436039280, 133997057207982607092, 2067402314984991892461
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(7*k,k) / (6*k+1).
a(n) = (-1)^(n+1)* F([8/7, 9/7, 10/7, 11/7, 12/7, 13/7, 1-n], [4/3, 3/2, 5/3, 11/6, 2, 13/6], 7^7/6^6), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
a(n) ~ 776887^(n + 1/2) / (343 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Nov 17 2021

A371538 G.f. A(x) satisfies A(x) = (1 + x*A(x)^2 / (1+x))^3.

Original entry on oeis.org

1, 3, 18, 151, 1440, 14835, 160793, 1806849, 20859129, 245905348, 2947869600, 35825319390, 440372147956, 5465555197818, 68396554601013, 862066323857486, 10933638171672105, 139439595024315675, 1787056241039876890, 23003636498360053905, 297283046361025602900
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+3, k)/(6*k+3));

Formula

a(n) = 3 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+3,k)/(6*k+3).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A349362.

A371537 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3 / (1+x))^2.

Original entry on oeis.org

1, 2, 11, 90, 845, 8620, 92792, 1037474, 11930952, 140223730, 1676824810, 20336742860, 249554057158, 3092735367966, 38653949888993, 486656046354650, 6166315484899445, 78573243500307870, 1006223574171080479, 12943581721362983708, 167170200918998754129
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+2, k)/(6*k+2));

Formula

a(n) = 2 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+2,k)/(6*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A349362.

A371539 G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/2) / (1+x))^4.

Original entry on oeis.org

1, 4, 26, 224, 2171, 22600, 246754, 2787856, 32318849, 382266056, 4594893684, 55966343520, 689245218880, 8568130064280, 107371481352870, 1354944741505580, 17203182641794020, 219604431213873060, 2816826935574781930, 36286757255072528360, 469266638574298431490
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+4, k)/(6*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+4,k)/(6*k+4).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349362.

A371540 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^5.

Original entry on oeis.org

1, 5, 35, 310, 3055, 32151, 353755, 4019825, 46808750, 555621400, 6698027100, 81779512155, 1009194553315, 12567338972700, 157725047958100, 1992990741398625, 25333585976926275, 323725357496659565, 4156196637610760235, 53585106340408250725, 693491493195479127175
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+4,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349362.

A371541 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1+x))^6.

Original entry on oeis.org

1, 6, 45, 410, 4110, 43746, 485237, 5547396, 64901670, 773296320, 9350929395, 114464359296, 1415620823147, 17661466502796, 222017667461685, 2809362871991380, 35755481454362355, 457410181217186886, 5878378983480722222, 75856853080508789406
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+6, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+6,k)/(k+1).
G.f.: A(x) = B(x)^6 where B(x) is the g.f. of A349362.
Showing 1-10 of 12 results. Next