cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A324398 a(1) = 0; for n > 1, a(n) = A318458(A156552(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 6, 0, 0, 1, 0, 1, 8, 9, 0, 1, 0, 1, 16, 1, 0, 1, 0, 1, 10, 1, 0, 1, 0, 1, 0, 1, 20, 9, 0, 1, 66, 1, 0, 1, 0, 1, 6, 1, 0, 1, 0, 0, 2, 1, 0, 1, 36, 1, 258, 1, 0, 1, 0, 1, 6, 41, 0, 1, 0, 1, 0, 1, 0, 17, 0, 1, 16, 1, 32, 1, 0, 1, 10, 1, 0, 1, 132, 1, 1026, 1, 0, 33, 72, 1, 0, 1, 256, 25, 0, 0, 66, 17, 0, 1, 0, 1, 34
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A318458(A156552(n)).
a(n) = A156552(n) AND (A323243(n) - A156552(n)).

A324649 Numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.

Original entry on oeis.org

6, 20, 28, 36, 66, 72, 88, 100, 104, 114, 132, 150, 240, 258, 264, 272, 280, 304, 354, 368, 392, 402, 464, 496, 498, 516, 550, 552, 642, 644, 680, 708, 748, 770, 774, 784, 786, 834, 836, 840, 860, 978, 1026, 1032, 1040, 1044, 1056, 1062, 1064, 1068, 1074, 1092, 1104, 1120, 1184, 1232, 1266, 1312, 1362, 1376, 1410, 1504
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324648. Fixed points of A318458, also positions of the records in the latter.
Intersection with A324652 gives A324643.
The odd terms are: 7425, 76545, 92565, ... (A324897).

Crossrefs

Cf. A000396, A324643, A324897, A324898 (subsequences).

Programs

  • Mathematica
    Select[Range@ 1600, BitAnd[#, DivisorSigma[1, #] - #] == # &] (* Michael De Vlieger, Apr 21 2019, after Vincenzo Librandi at A318458 *)
  • PARI
    for(n=1,oo,if(bitand(n,sigma(n)-n)==n, print1(n, ", ")));

A324389 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A318458(n)] for all other numbers, except f(1) = -1.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 2, 5, 3, 6, 3, 7, 8, 2, 3, 9, 3, 10, 3, 11, 3, 12, 2, 13, 14, 15, 3, 16, 3, 2, 17, 18, 3, 19, 3, 11, 3, 20, 3, 21, 3, 22, 23, 7, 3, 6, 2, 24, 25, 26, 3, 27, 28, 29, 28, 30, 3, 31, 3, 32, 33, 2, 3, 34, 3, 18, 17, 35, 3, 36, 3, 5, 3, 37, 3, 38, 3, 39, 2, 18, 3, 40, 41, 11, 17, 42, 3, 43, 44, 45, 3, 46, 47, 12, 3, 48, 23, 49, 3, 50, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
A324401(i) = A324401(j) => a(i) = a(j).
Regarding the scatter plot of this sequence, see also comments in A318310. - Antti Karttunen, Feb 04 2020

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324389(n) = if(1==n,-1,[A009194(n), A318458(n)]);
    v324389 = rgs_transform(vector(up_to,n,Aux324389(n)));
    A324389(n) = v324389[n];

A324530 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A033879(n), A318458(n)] for all other numbers, except f(1) = -1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 2, 16, 28, 19, 29, 30, 31, 19, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 2, 39, 56, 57, 58, 35, 59, 60, 61, 62, 63, 64, 65, 51, 66, 67, 68, 41, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 51, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A033879(n) = (n+n-sigma(n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324530(n) = if(1==n,-1,[A033879(n), A318458(n)]);
    v324530 = rgs_transform(vector(up_to,n,Aux324530(n)));
    A324530(n) = v324530[n];

Formula

a(2^n) = 2 for all n >= 1.

A324898 Odd numbers k such that sigma(k) is congruent to 2 modulo 4 and k = A318458(k), where A318458(k) is bitwise-AND of k and sigma(k)-k.

Original entry on oeis.org

236925, 3847725, 51122925, 69468525, 151141725, 154669725, 269748225, 344211525, 415565325, 445817925, 551569725, 1111904325, 1112565825, 1113756525, 1175717025, 1400045625, 1631666925, 1695170925, 1820873925, 1915847325, 1946981925, 2179080225, 2321121825, 2453690925, 2460041325, 2491740225, 3223500525, 3493517445, 3775103325
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 29 terms factored:
236925 = 3^6 * 5^2 * 13,
3847725 = 3^2 * 5^2 * 7^2 * 349,
51122925 = 3^2 * 5^2 * 7^2 * 4637,
69468525 = 3^2 * 5^2 * 7^2 * 6301,
151141725 = 3^2 * 5^2 * 7^2 * 13709,
154669725 = 3^2 * 5^2 * 7^2 * 14029,
269748225 = 3^6 * 5^2 * 19^2 * 41,
344211525 = 3^4 * 5^2 * 7^2 * 3469,
415565325 = 3^2 * 5^2 * 7^2 * 37693,
445817925 = 3^4 * 5^2 * 7^2 * 4493,
551569725 = 3^2 * 5^2 * 7^4 * 1021,
1111904325 = 3^2 * 5^2 * 7^2 * 100853,
1112565825 = 3^2 * 5^2 * 7^2 * 100913,
1113756525 = 3^2 * 5^2 * 7^2 * 101021,
1175717025 = 3^4 * 5^2 * 7^2 * 17^2 * 41,
1400045625 = 3^2 * 5^4 * 11^4 * 17,
1631666925 = 3^2 * 5^2 * 7^2 * 147997,
1695170925 = 3^2 * 5^2 * 7^2 * 153757,
1820873925 = 3^4 * 5^2 * 13 * 263^2, [Here the unitary prime is not the largest]
1915847325 = 3^2 * 5^2 * 7^2 * 173773,
1946981925 = 3^2 * 5^2 * 7^2 * 176597,
2179080225 = 3^4 * 5^2 * 7^2 * 21961,
2321121825 = 3^4 * 5^2 * 11^2 * 9473,
2453690925 = 3^2 * 5^2 * 7^2 * 222557,
2460041325 = 3^2 * 5^2 * 7^2 * 223133,
2491740225 = 3^6 * 5^2 * 13^2 * 809,
3223500525 = 3^2 * 5^2 * 7^2 * 292381,
3493517445 = 3^6 * 5^1 * 11^2 * 89^2, [Here the unitary prime is not the largest]
3775103325 = 3^2 * 5^2 * 7^2 * 342413.
Subsequence of A228058 provided this sequence does not contain any prime powers. - Antti Karttunen, Jun 17 2019
Sequence contains no prime powers up to 10^20. I believe any prime powers must be of the form (4k+1)^(4e+1), in which case I have verified this up to 10^50. - Charles R Greathouse IV, Dec 08 2021

Crossrefs

Intersection of A191218 and A324897, also intersection of A191218 and A324649.

Programs

  • Mathematica
    Select[Range[10^5, 10^8, 2], And[Mod[#2, 4] == 2, BitAnd[#1, #2 - #1] == #1] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Jun 22 2019 *)
  • PARI
    for(n=1, oo, if((n%2)&&2==((t=sigma(n))%4)&&(bitand(n, t-n)==n), print1(n,", ")));

A324531 Lexicographically earliest sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A318458(n)] for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 9, 11, 12, 2, 4, 13, 9, 14, 15, 16, 17, 10, 18, 19, 20, 21, 17, 22, 23, 2, 4, 7, 9, 24, 15, 16, 17, 25, 15, 26, 27, 28, 29, 30, 31, 10, 18, 32, 33, 34, 27, 35, 36, 37, 38, 39, 40, 41, 31, 42, 43, 2, 4, 44, 9, 7, 15, 45, 17, 46, 15, 47, 27, 48, 27, 49, 31, 50, 51, 51, 27, 52, 53, 54, 55, 56, 27, 57, 58, 59, 55, 60, 61, 10, 9, 48
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A324532(i) = A324532(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324531(n) = if(1==n,0,[A278222(n), A318458(n)]);
    v324531 = rgs_transform(vector(up_to,n,Aux324531(n)));
    A324531(n) = v324531[n];

Formula

For n >= 1, a(2^n) = 2.

A324648 a(n) = n - A318458(n), where A318458(n) is bitwise-AND of n and the sum of proper divisors of n (sigma(n)-n).

Original entry on oeis.org

1, 2, 2, 4, 4, 0, 6, 8, 9, 2, 10, 12, 12, 4, 6, 16, 16, 2, 18, 0, 20, 16, 22, 24, 25, 10, 18, 0, 28, 20, 30, 32, 32, 34, 34, 0, 36, 32, 38, 8, 40, 8, 42, 4, 12, 36, 46, 48, 49, 16, 34, 16, 52, 52, 38, 56, 40, 26, 58, 16, 60, 28, 22, 64, 64, 0, 66, 68, 68, 4, 70, 0, 72, 66, 74, 12, 76, 4, 78, 16, 81, 82, 82, 80, 64, 80, 86, 0, 88
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A001065, A004198, A318458, A324658, A324649 (positions of zeros).

Programs

  • Mathematica
    Array[# - BitAnd[#, DivisorSigma[1, #] - #] &, 100] (* Paolo Xausa, Mar 12 2024 *)
  • PARI
    A318458(n) = bitand(n,sigma(n)-n);
    A324648(n) = (n-A318458(n));
    
  • PARI
    A324648(n) = (n-bitand(n,sigma(n)-n));

Formula

a(n) = n - A318458(n).

A324897 Odd numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.

Original entry on oeis.org

7425, 76545, 92565, 236925, 831105, 954765, 1401345, 2011905, 2048445, 2129985, 2253825, 2445345, 2621745, 2974725, 3283245, 3847725, 5709825, 6447105, 8422785, 8503425, 8945685, 10781505, 12488385, 13470345, 14322945, 15213825, 15340545, 19470465, 19502145, 20075265, 22749825, 25740225, 25756605, 26215245, 27009045
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 16 terms factored:
7425 = 3^3 * 5^2 * 11,
76545 = 3^7 * 5 * 7,
92565 = 3^2 * 5 * 11^2 * 17,
236925 = 3^6 * 5^2 * 13,
831105 = 3^2 * 5 * 11 * 23 * 73,
954765 = 3^2 * 5 * 7^2 * 433,
1401345 = 3^2 * 5 * 11 * 19 * 149,
2011905 = 3^3 * 5 * 7 * 2129,
2048445 = 3^2 * 5 * 7^2 * 929,
2129985 = 3^2 * 5 * 11 * 13 * 331,
2253825 = 3^5 * 5^2 * 7 * 53,
2445345 = 3^2 * 5 * 7^2 * 1109,
2621745 = 3^2 * 5 * 7^2 * 29 * 41,
2974725 = 3^4 * 5^2 * 13 * 113,
3283245 = 3^2 * 5 * 7^2 * 1489,
3847725 = 3^2 * 5^2 * 7^2 * 349.

Crossrefs

Subsequence of A324649.
Cf. A318458, A324647, A324898 (a subsequence).

Programs

A324532 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A000120(n), A318458(n)] for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 5, 2, 6, 7, 5, 6, 5, 8, 9, 2, 3, 10, 5, 11, 5, 12, 13, 6, 14, 15, 9, 16, 13, 17, 18, 2, 3, 6, 5, 19, 5, 12, 13, 20, 5, 21, 13, 22, 23, 17, 18, 6, 14, 21, 24, 25, 13, 26, 27, 14, 24, 28, 18, 29, 18, 30, 31, 2, 3, 32, 5, 6, 5, 33, 13, 34, 5, 35, 13, 36, 13, 37, 18, 38, 14, 14, 13, 39, 40, 41, 18, 42, 13, 43, 27, 44, 18, 45, 46, 6, 5, 36, 23, 47, 13
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324532(n) = if(1==n,0,[hammingweight(n), A318458(n)]);
    v324532 = rgs_transform(vector(up_to,n,Aux324532(n)));
    A324532(n) = v324532[n];

Formula

For n >= 1, a(2^n) = 2.

A336157 Lexicographically earliest infinite sequence such that a(i) = a(j) => A318458(i) = A318458(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 4, 5, 2, 6, 2, 7, 8, 1, 2, 9, 2, 10, 11, 3, 2, 6, 4, 12, 13, 14, 2, 15, 2, 1, 11, 6, 11, 16, 2, 3, 11, 17, 2, 18, 2, 19, 20, 7, 2, 6, 4, 21, 22, 23, 2, 24, 22, 6, 22, 17, 2, 25, 2, 26, 27, 1, 11, 28, 2, 6, 11, 28, 2, 29, 2, 5, 30, 31, 11, 32, 2, 31, 33, 6, 2, 34, 35, 3, 11, 36, 2, 37, 22, 38, 11, 39, 40, 6, 2, 41, 20, 42, 2, 43, 2, 44, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A318458(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j).
A324401(i) = A324401(j) => a(i) = a(j).

Crossrefs

Cf. A324389, A324530, A324531, A324532 for other similar constructions (also similar by their scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A318458(n) = bitand(n, sigma(n)-n);
    Aux336157(n) = [A318458(n), A336158(n)];
    v336157 = rgs_transform(vector(up_to, n, Aux336157(n)));
    A336157(n) = v336157[n];
Showing 1-10 of 22 results. Next