A101370
Number of zero-one matrices with n ones and no zero rows or columns.
Original entry on oeis.org
1, 4, 24, 196, 2016, 24976, 361792, 5997872, 111969552, 2324081728, 53089540992, 1323476327488, 35752797376128, 1040367629940352, 32441861122796672, 1079239231677587264, 38151510015777089280, 1428149538870997774080, 56435732691153773665280
Offset: 1
a(2)=4:
[1 1] [1] [1 0] [0 1]
..... [1] [0 1] [1 0]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 24 matrices:
[111]
.
[11][11][110][101][10][100][011][01][010][001]
[10][01][001][010][11][011][100][11][101][110]
.
[1][10][10][10][100][100][01][01][010][01][010][001][001]
[1][10][01][01][010][001][10][10][100][01][001][100][010]
[1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, p. 435 (IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13), Springer, Berlin. [Rainer Rosenthal, Apr 10 2007]
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
- Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Matrix symmetric and quasi-symmetric functions and noncommutative representation theory, arXiv:2503.14417 [math.CO], 2025. See p. 20.
- M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
-
P:=function(n) return Sum([1..n],x->Stirling2(n,x)*Factorial(x)); end;
-
F:=function(n) return Sum([1..n],x->(-1)^(n-x)*Stirling1(n,x)*P(x)^2)/Factorial(n); end;
-
m = 17; a670[n_] = Sum[ StirlingS2[n, k]*k!, {k, 0, n}]; Rest[ CoefficientList[ Series[ Sum[ a670[n]^2*(Log[1 + x]^n/n!), {n, 0, m}], {x, 0, m}], x]] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
-
{A000670(n)=sum(k=0,n,stirling(n, k,2)*k!)}
{a(n)=polcoeff(sum(m=0,n,A000670(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
/* Paul D. Hanna, Nov 07 2009 */
A321446
Number of (0,1)-matrices with n ones, no zero rows or columns, and distinct rows and columns.
Original entry on oeis.org
1, 1, 2, 10, 72, 624, 6522, 80178, 1129368, 17917032, 316108752, 6138887616, 130120838400, 2989026225696, 73964789192400, 1961487062520720, 55495429438186920, 1668498596700706440, 53122020640948010640, 1785467619718933936560, 63175132023953553400440
Offset: 0
The a(3) = 10 matrices:
[1 1] [1 1] [1 0] [0 1]
[1 0] [0 1] [1 1] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000612,
A007716,
A049311,
A101370,
A120733,
A135589,
A283877,
A316980,
A319559,
A321515,
A321586,
A321587,
A321588,
A369285.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,6}]
-
\\ Q(m, n, wf) defined in A321588.
seq(n)={my(R=vectorv(n,m,Q(m,n,w->1 + y^w + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ Andrew Howroyd, Jan 24 2024
A321586
Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows (or distinct columns).
Original entry on oeis.org
1, 1, 4, 26, 204, 1992, 23336, 318080, 4948552, 86550424, 1681106080, 35904872576, 836339613984, 21100105791936, 573194015723840, 16681174764033728, 517768654898701120, 17074080118403865856, 596117945858272441408, 21967609729338776864384, 852095613819396775627200
Offset: 0
The a(3) = 26 matrices:
[3][21][12][111]
.
[2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
[1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
.
[100][100][010][010][001][001]
[010][001][100][001][100][010]
[001][010][001][100][010][100]
-
C:= binomial:
b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> add(add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Sep 16 2019
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#]]&]],{n,5}]
A327583
Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i distinct colors in increasing order; triangle T(n,k), n>=0, min(j:A001787(j)>=n)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 3, 4, 13, 6, 48, 75, 150, 536, 541, 300, 2820, 6320, 4683, 666, 11144, 50150, 81012, 47293, 936, 41346, 308080, 903210, 1134952, 545835, 1824, 131304, 1689040, 7805080, 16914786, 17346352, 7087261, 2520, 420084, 8279640, 58728660, 194051060, 333027016
Offset: 0
T(3,2) = 4: 2ab1a, 2ab1b, 1a2ab, 1b2ab.
T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
T(4,2) = 6: 2ab1a1b, 1a2ab1b, 1a1b2ab, 2ab1b1a, 1b2ab1a, 1b1a2ab.
Triangle T(n,k) begins:
1;
1;
3;
4, 13;
6, 48, 75;
150, 536, 541;
300, 2820, 6320, 4683;
666, 11144, 50150, 81012, 47293;
936, 41346, 308080, 903210, 1134952, 545835;
...
-
C:= binomial:
g:= proc(n) option remember; n*2^(n-1) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k, p) option remember; `if`(n=0, p!,
`if`(i<1 or k add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k):
seq(seq(T(n, k), k=h(n)..n), n=0..12);
-
c = Binomial;
g[n_] := g[n] = n*2^(n - 1);
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0,
h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!,
If[i < 1 || k < h[n], 0, Sum[b[n - i*j, Min[n - i*j, i - 1],
k, p + j]*c[c[k, i], j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i, 0]*(-1)^(k - i)*c[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2021, after Alois P. Heinz *)
A327584
Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns.
Original entry on oeis.org
1, 1, 3, 4, 6, 13, 48, 150, 300, 666, 936, 1824, 2520, 2160, 5040, 75, 536, 2820, 11144, 41346, 131304, 420084, 1191552, 3427008, 9207456, 23466720, 61522560, 141553560, 345346560, 777152160, 1635096960, 3700806480, 6998261760, 14211912960, 27442437120
Offset: 0
T(3,2) = 4: 2ab1a, 2ab1b, 1a2ab, 1b2ab.
T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
T(4,2) = 6: 2ab1a1b, 1a2ab1b, 1a1b2ab, 2ab1b1a, 1b2ab1a, 1b1a2ab.
Triangle T(n,k) begins:
1;
1;
3;
4, 13;
6, 48, 75;
150, 536, 541;
300, 2820, 6320, 4683;
666, 11144, 50150, 81012, 47293;
936, 41346, 308080, 903210, 1134952, 545835;
...
-
C:= binomial:
g:= proc(n) option remember; n*2^(n-1) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k, p) option remember; `if`(n=0, p!,
`if`(i<1 or k add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k):
seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5);
-
c = Binomial;
g[n_] := g[n] = n*2^(n - 1);
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0,
h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!,
If[i < 1 || k < h[n], 0, Sum[b[n - i*j, Min[n - i*j, i - 1],
k, p + j]*c[c[k, i], j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i, 0]*(-1)^(k - i)*c[k, i], {i, 0, k}];
Table[Table[T[n, k], {n, k, k*2^(k - 1)}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Feb 22 2021, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments