cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A097945 a(n) = mu(n)*phi(n) where mu(n) is the Mobius function (A008683) and phi(n) is the Euler totient function (A000010).

Original entry on oeis.org

1, -1, -2, 0, -4, 2, -6, 0, 0, 4, -10, 0, -12, 6, 8, 0, -16, 0, -18, 0, 12, 10, -22, 0, 0, 12, 0, 0, -28, -8, -30, 0, 20, 16, 24, 0, -36, 18, 24, 0, -40, -12, -42, 0, 0, 22, -46, 0, 0, 0, 32, 0, -52, 0, 40, 0, 36, 28, -58, 0, -60, 30, 0, 0, 48, -20, -66, 0, 44, -24, -70, 0, -72, 36, 0, 0, 60, -24, -78, 0, 0, 40, -82, 0
Offset: 1

Views

Author

Gerald McGarvey, Sep 04 2004

Keywords

Comments

Also, a(n) = mu(n)*uphi(n) where mu(n) is the Mobius function (A008683) and uphi(n) is the unitary totient function (A047994), since phi(n) = uphi(n) when n is squarefree, while mu(n) = 0 when n is not squarefree. - Franklin T. Adams-Watters, May 14 2006
Conjecture: Sum_{n>=1} mu(n)/phi(n) = Sum_{n>=1} a(n)/phi(n)^2 = 0. It is true that Sum_{n>=1} mu(n)/phi(n)^s = 0 at least for s > 1 since: phi(2)=1, phi is multiplicative, so for n's that are squarefree, the phi(n) values can be partitioned in pairs where phi(m)=phi(2m) and mu(m) = -mu(2m). So Sum_{i=1..n} mu(i)/phi(i)^s < Sum_{j=floor(n/2)..n} 1/phi(j)^s, which approaches 0 as n increases since (1) n^(1-e) < phi(n) < n for any e > 0 and n > N(e) and (2) Sum_{i..n} 1/n^s converges for s > 1. Conjecture: Sum_{n>=1} mu(n)/phi(n)^z = 0 for Re(z) > 1.
Multiplicative with a(p^1) = 1-p, a(p^e) = 0, e > 1. - Mitch Harris, May 24 2005
Row sums of triangle A143153 = a signed version of the sequence such that parity = (-) iff A008683(n) = (+); 0 or (+): (1, 1, 2, 0, 4, -2, 6, 0, 0, -4, 10, 0, 12, -6, 0, 0, 0, ...). - Gary W. Adamson, Jul 27 2008
Dirichlet inverse of A003958. - R. J. Mathar, Jul 08 2011

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> mobius(n)*phi(n):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 06 2012
  • Mathematica
    Table[ MoebiusMu[n]EulerPhi[n], {n, 85}] (* Robert G. Wilson v, Sep 06 2004 *)
  • PARI
    a(n)=moebius(n)*eulerphi(n) \\ Charles R Greathouse IV, Feb 21 2013
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020

Formula

Dirichlet g.f.: Product_{primes p} (1-p^(1-s)+p^(-s)). - R. J. Mathar, Aug 29 2011
Sum_{d|n} abs(a(d)) = rad(n) = A007947(n). - Rémy Sigrist, Nov 05 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = A065464/2 = (1/2) * Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.21412475283854722... Equivalently, c = A065463 * 3 / Pi^2. - Vaclav Kotesovec, Jun 14 2020
From Antti Karttunen, Aug 20 2021: (Start)
a(n) = mu(n)*A000010(n) = mu(n)*A003958(n) = mu(n)*A047994(n) = mu(n)*A173557(n), where mu is Möbius mu function (A008683).
a(n) = A008966(n) * A023900(n) = abs(mu(n)) * A023900(n).
a(n) = A322581(n) - A003958(n).
(End)

Extensions

More terms from Robert G. Wilson v, Sep 06 2004
Edited by N. J. A. Sloane, May 20 2006

A322582 a(n) = n - A003958(n), where A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 5, 6, 1, 10, 1, 8, 7, 15, 1, 14, 1, 16, 9, 12, 1, 22, 9, 14, 19, 22, 1, 22, 1, 31, 13, 18, 11, 32, 1, 20, 15, 36, 1, 30, 1, 34, 29, 24, 1, 46, 13, 34, 19, 40, 1, 46, 15, 50, 21, 30, 1, 52, 1, 32, 39, 63, 17, 46, 1, 52, 25, 46, 1, 68, 1, 38, 43, 58, 17, 54, 1, 76, 65, 42, 1, 72, 21, 44, 31, 78, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2018

Keywords

Comments

a(p*(n/p)) - (n/p) = (p-1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as p*(n/p) - A003958(p*(n/p)) - (n/p) = (p-1)*(n/p) - (p-1)*A003958(n/p) = (p-1)*((n/p) - A003958(n/p)) = (p-1)*a(n/p). This shows that this sequence gives a lower limit for arithmetic derivative (A003415) in the same way as A348507 gives an upper limit for it. - Antti Karttunen, Nov 07 2021
With n = Product_{i=1..k} p_i the prime factorization of n, if one constructs for each i a test with a probability of success equal to 1/p_i, and if the tests are independent, then a(n)/n is the probability that at least one of the k tests succeeds. - Luc Rousseau, Jan 14 2023

Crossrefs

Cf. A003415, A003958, A322581, A348507, A348928 [= gcd(n,a(n))], A348975 (difference from the arithmetic derivative).
Cf. A349139, A348980, A348981, A348982, A348983 (Dirichlet convolutions with other sequences).
Cf. A168065 (gives the arithmetic mean of this and A348507), A168066.

Programs

  • Mathematica
    a[1] = 0; a[n_] := n - Times @@ ((First[#] - 1)^Last[#] & /@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    
  • PARI
    A020639(n) = if(1==n, n, (factor(n)[1, 1]));
    A322582(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (spf-1)); (s); }; \\ (Compare to the similar programs given in A003415 and A348507) - Antti Karttunen, Nov 07 2021

Formula

a(n) = n - A003958(n).
From Antti Karttunen, Nov 07 2021: (Start)
a(n) = A003415(n) - A348975(n).
For all n >= 1, a(n) <= A003415(n) <= A348507(n).
For n > 1, a(n) = a(A032742(n))*(A020639(n)-1) + A032742(n). [See the comment above and compare with Reinhard Zumkeller's May 09 2011 formula for A003415]
(End)

A323364 Sum of Dedekind's psi, A001615, and its Dirichlet inverse, A323363.

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 9, 16, 36, 0, 12, 0, 48, 48, 27, 0, 24, 0, 18, 64, 72, 0, 60, 36, 84, 32, 24, 0, 0, 0, 45, 96, 108, 96, 84, 0, 120, 112, 90, 0, 0, 0, 36, 48, 144, 0, 84, 64, 72, 144, 42, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 64, 99, 168, 0, 0, 54, 192, 0, 0, 132, 0, 228, 96, 60, 192, 0, 0, 126, 112, 252, 0, 288, 216, 264, 240, 180, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Programs

A349126 Sum of A064989 and its Dirichlet inverse, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 10, 12, 1, 0, 4, 0, 3, 20, 14, 0, 2, 9, 22, 8, 5, 0, 0, 0, 1, 28, 26, 30, 4, 0, 34, 44, 3, 0, 0, 0, 7, 12, 38, 0, 2, 25, 9, 52, 11, 0, 8, 42, 5, 68, 46, 0, 6, 0, 58, 20, 1, 66, 0, 0, 13, 76, 0, 0, 4, 0, 62, 18, 17, 70, 0, 0, 3, 16, 74, 0, 10, 78, 82, 92, 7, 0, 12, 110, 19, 116
Offset: 1

Views

Author

Antti Karttunen, Nov 13 2021

Keywords

Comments

Question: Are all terms nonnegative?
Answer: All terms certainly are >= 0. See Sebastian Karlsson's Nov 13 2021 multiplicative formula for A349125. - Antti Karttunen, Apr 20 2022

Crossrefs

Cf. also A322581, A349135.
Coincides with A349349 on odd numbers.

Programs

  • Mathematica
    f1[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := If[e == 1, If[p == 2, -1, -NextPrime[p, -1]], 0]; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a1[n] + a2[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    A349126(n) = (A064989(n)+A349125(n)); \\ Needs also code from A349125.
    
  • PARI
    A349126(n) = if(1==n,2,-sumdiv(n, d, if(1==d||n==d,0,A064989(d)*A349125(n/d)))); \\ (This demonstrates the "cut convolution" formula) - Antti Karttunen, Nov 13 2021

Formula

a(n) = A064989(n) + A349125(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A064989(d) * A349125(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A064989(A030229(n)).
For all n >= 1, a(A001248(n)) = A280076(n).

A323399 Sum of Jordan function J_2(n), A007434 and its Dirichlet inverse, A046970.

Original entry on oeis.org

2, 0, 0, 9, 0, 48, 0, 45, 64, 144, 0, 120, 0, 288, 384, 189, 0, 240, 0, 360, 768, 720, 0, 408, 576, 1008, 640, 720, 0, 0, 0, 765, 1920, 1728, 2304, 888, 0, 2160, 2688, 1224, 0, 0, 0, 1800, 1920, 3168, 0, 1560, 2304, 1872, 4608, 2520, 0, 1968, 5760, 2448, 5760, 5040, 0, 1728, 0, 5760, 3840, 3069, 8064, 0, 0, 4320, 8448, 0, 0, 3480, 0, 8208, 4992, 5400
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Programs

  • PARI
    A007434(n) = sumdiv(n, d, d*d*moebius(n/d));
    A046970(n) = if(1==n,n,my(f=factor(n)); for(i=1, #f~, f[i,1] = 1-(f[i,1]^2)); factorback(f[,1]));
    A323399(n) = (A007434(n) + A046970(n));

Formula

a(n) = A007434(n) + A046970(n).

A323403 Sum of sigma and its Dirichlet inverse: a(n) = A000203(n) + A046692(n).

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 15, 16, 36, 0, 20, 0, 48, 48, 31, 0, 30, 0, 30, 64, 72, 0, 60, 36, 84, 40, 40, 0, 0, 0, 63, 96, 108, 96, 97, 0, 120, 112, 90, 0, 0, 0, 60, 60, 144, 0, 124, 64, 78, 144, 70, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 80, 127, 168, 0, 0, 90, 192, 0, 0, 195, 0, 228, 104, 100, 192, 0, 0, 186, 121, 252, 0, 288, 216, 264, 240, 180, 0, 288
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v046692 = DirInverse(vector(up_to,n,sigma(n)));
    A046692(n) = v046692[n];
    A323403(n) = (sigma(n)+A046692(n));

Formula

a(n) = A000203(n) + A046692(n).

A323408 Sum of unitary phi and its Dirichlet inverse: a(n) = A047994(n) + A323407(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 5, 4, 8, 0, 10, 0, 12, 16, 15, 0, 12, 0, 20, 24, 20, 0, 18, 16, 24, 24, 30, 0, 0, 0, 35, 40, 32, 48, 32, 0, 36, 48, 36, 0, 0, 0, 50, 48, 44, 0, 30, 36, 32, 64, 60, 0, 28, 80, 54, 72, 56, 0, 8, 0, 60, 72, 71, 96, 0, 0, 80, 88, 0, 0, 64, 0, 72, 64, 90, 120, 0, 0, 60, 88, 80, 0, 12, 128, 84, 112, 90, 0, 16, 144, 110, 120
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v323407 = DirInverse(vector(up_to,n,A047994(n)));
    A323407(n) = v323407[n];
    A323408(n) = (A047994(n) + A323407(n));

A349912 Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 6, 2, 1, 0, 1, 0, 1, 6, 10, 0, 1, 1, 6, 1, 3, 0, 0, 0, 1, 10, 2, 6, 1, 0, 18, 6, 1, 0, 0, 0, 5, 1, 22, 0, 1, 9, 1, 2, 3, 0, 1, 10, 3, 18, 14, 0, 1, 0, 30, 3, 1, 6, 0, 0, 1, 22, 0, 0, 1, 0, 18, 1, 9, 30, 0, 0, 1, 1, 10, 0, 3, 2, 42, 14, 5, 0, 1, 18, 11, 30, 46, 18, 1, 0, 9, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2021

Keywords

Crossrefs

Cf. A336466 (also a quadrisection of this sequence), A349911.
Cf. also A322581.

Programs

  • Mathematica
    f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };
    memoA349911 = Map();
    A349911(n) = if(1==n,1,my(v); if(mapisdefined(memoA349911,n,&v), v, v = -sumdiv(n,d,if(dA336466(n/d)*A349911(d),0)); mapput(memoA349911,n,v); (v)));
    A349912(n) = (A336466(n)+A349911(n));

Formula

a(n) = A336466(n) + A349911(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A336466(d) * A349911(n/d).
a(4*n) = A336466(n).
Showing 1-8 of 8 results.