Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A323541
a(n) = Product_{k=0..n} (k^3 + (n-k)^3).
Original entry on oeis.org
0, 1, 128, 59049, 51380224, 80869140625, 207351578198016, 811509810302822449, 4603095542875667038208, 36344623587588604291790241, 386644580358400000000000000000, 5395532942025804980378907333844441, 96578621213529440721046520779140759552
Offset: 0
-
m:=3; [(&*[k^m + (n-k)^m: k in [0..n]]): n in [0..15]]; // G. C. Greubel, Jan 18 2019
-
Table[Product[k^3+(n-k)^3, {k, 0, n}], {n, 0, 15}]
-
m=3; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=3; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019
A323542
a(n) = Product_{k=0..n} (k^4 + (n-k)^4).
Original entry on oeis.org
0, 1, 512, 1896129, 14101250048, 242755875390625, 7888809923487203328, 452522453429009743939201, 42521926771106843499966758912, 6212193882217859346149080691430849, 1350441156698962215630405632000000000000, 421551664651621436548685508587919503984205889
Offset: 0
-
[(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // Vincenzo Librandi, Jan 18 2019
-
Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}]
-
m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019
A323546
a(n) = Product_{k=0..n} (k^8 + (n-k)^8).
Original entry on oeis.org
0, 1, 131072, 2843192875329, 94689598336441253888, 30456484467910986480712890625, 24450543078081443740165325452474318848, 74458223912158060479139869222818674648092178561, 545831702006800417886454373052629612732034857946832699392
Offset: 0
Cf. 2*
A000542 (with sum instead of product).
-
Table[Product[k^8+(n-k)^8, {k, 0, n}], {n, 0, 10}]
-
m=8; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=8; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019
A323543
a(n) = Product_{k=0..n} (k^5 + (n-k)^5).
Original entry on oeis.org
0, 1, 2048, 64304361, 3995393327104, 775913238525390625, 320224500476333990608896, 273342392644434762426370643281, 429621172463958849019228299940855808, 1175198860360296464427314161342724729270241, 5278148679274118560000000000000000000000000000000
Offset: 0
Cf. 2*
A000539 (with sum instead of product).
-
[(&*[(k^5 + (n-k)^5): k in [0..n]]): n in [0..12]]; // Vincenzo Librandi, Jan 18 2019
-
Table[Product[k^5+(n-k)^5, {k, 0, n}], {n, 0, 12}]
-
m=5; vector(12, n, n--; prod(k=0,n, k^m +(n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=5; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..12)] # G. C. Greubel, Jan 18 2019
A323544
a(n) = Product_{k=0..n} (k^6 + (n-k)^6).
Original entry on oeis.org
0, 1, 8192, 2245338225, 1144394036019200, 2577023355527587890625, 13410804447068120796679372800, 172661401915668867785003701060950625, 4548909593429214367033270472265433088000000, 234845240509381890690238640158397433600579682850625
Offset: 0
-
[(&*[(k^6 + (n-k)^6): k in [0..n]]): n in [0..10]]; // Vincenzo Librandi, Jan 18 2019
-
Table[Product[k^6+(n-k)^6, {k, 0, n}], {n, 0, 10}]
-
m=6; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=6; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019
A323545
a(n) = Product_{k=0..n} (k^7 + (n-k)^7).
Original entry on oeis.org
0, 1, 32768, 79593387129, 328983774635229184, 8781626117710113525390625, 570409595340477623191338982834176, 112244673425189306235795780017831813874289, 49449149324106963036650868175987491957290049732608, 48527312221741371319651099141827554314119977393170380398241
Offset: 0
Cf. 2*
A000541 (with sum instead of product).
-
m:=7; [(&*[k^m + (n-k)^m: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Jan 18 2019
-
Table[Product[k^7+(n-k)^7, {k, 0, n}], {n, 0, 10}]
-
m=7; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=7; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019
A272244
a(n) = Product_{k=0..n} (n^2 + k^2).
Original entry on oeis.org
0, 2, 160, 21060, 4352000, 1313845000, 547573478400, 301758856490000, 212663770808320000, 186659516597629140000, 199722414913149440000000, 255947740845844788169000000, 387074162712817024892928000000, 682170272459193898736228210000000
Offset: 0
-
Table[Product[n^2+k^2,{k,0,n}],{n,0,15}]
A323575
a(n) = Product_{k=1..n} (k^k + (n-k)^k).
Original entry on oeis.org
1, 1, 8, 405, 229376, 1827109375, 257063481999360, 755170478103207873707, 54143353027014803410072371200, 107483342384971486221625795626923693445, 6647872853044955947850033397760000000000000000000, 14166017880429890423491783342799863539312599105433301729629445
Offset: 0
-
[1] cat [(&*[k^k +(n-k)^k: k in [1..n]]): n in [1..12]]; // G. C. Greubel, Feb 08 2019
-
Table[Product[k^k+(n-k)^k, {k, 1, n}], {n, 0, 12}]
-
vector(12, n, n--; prod(k=1,n, k^k+(n-k)^k)) \\ G. C. Greubel, Feb 08 2019
-
[product(k^k +(n-k)^k for k in (1..n)) for n in (0..12)] # G. C. Greubel, Feb 08 2019
A320345
a(n) = Product_{k=0..n} (k^9 + (n-k)^9).
Original entry on oeis.org
0, 1, 524288, 101957062669641, 27265063485978531856384, 106913106903205778598785400390625, 1052153174824916171740710027027385486934016, 50134911460309737788263856880351450247312603708106641, 6079819706045473432785376698707222441479676085024627875693723648
Offset: 0
-
Table[Product[k^9+(n-k)^9, {k, 0, n}], {n, 0, 10}]
Showing 1-10 of 18 results.
Comments