cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A323541 a(n) = Product_{k=0..n} (k^3 + (n-k)^3).

Original entry on oeis.org

0, 1, 128, 59049, 51380224, 80869140625, 207351578198016, 811509810302822449, 4603095542875667038208, 36344623587588604291790241, 386644580358400000000000000000, 5395532942025804980378907333844441, 96578621213529440721046520779140759552
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000537 and A163102 (with sum instead of product).

Programs

  • Magma
    m:=3; [(&*[k^m + (n-k)^m: k in [0..n]]): n in [0..15]]; // G. C. Greubel, Jan 18 2019
    
  • Mathematica
    Table[Product[k^3+(n-k)^3, {k, 0, n}], {n, 0, 15}]
  • PARI
    m=3; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=3; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp(2*(Pi/(3*sqrt(3))-1)*n) * n^(3*n + 3).

A323542 a(n) = Product_{k=0..n} (k^4 + (n-k)^4).

Original entry on oeis.org

0, 1, 512, 1896129, 14101250048, 242755875390625, 7888809923487203328, 452522453429009743939201, 42521926771106843499966758912, 6212193882217859346149080691430849, 1350441156698962215630405632000000000000, 421551664651621436548685508587919503984205889
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000538 and A259108 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}]
  • PARI
    m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((Pi*(sqrt(2) - 1/2) - 4)*n) * n^(4*n + 4).

A323546 a(n) = Product_{k=0..n} (k^8 + (n-k)^8).

Original entry on oeis.org

0, 1, 131072, 2843192875329, 94689598336441253888, 30456484467910986480712890625, 24450543078081443740165325452474318848, 74458223912158060479139869222818674648092178561, 545831702006800417886454373052629612732034857946832699392
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000542 (with sum instead of product).

Programs

  • Mathematica
    Table[Product[k^8+(n-k)^8, {k, 0, n}], {n, 0, 10}]
  • PARI
    m=8; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=8; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp(((2*sqrt(2+sqrt(2)) - 1/2 - sqrt(2))*Pi - 8)*n) * n^(8*n+8).

A323543 a(n) = Product_{k=0..n} (k^5 + (n-k)^5).

Original entry on oeis.org

0, 1, 2048, 64304361, 3995393327104, 775913238525390625, 320224500476333990608896, 273342392644434762426370643281, 429621172463958849019228299940855808, 1175198860360296464427314161342724729270241, 5278148679274118560000000000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000539 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^5 + (n-k)^5): k in [0..n]]): n in [0..12]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^5+(n-k)^5, {k, 0, n}], {n, 0, 12}]
  • PARI
    m=5; vector(12, n, n--; prod(k=0,n, k^m +(n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=5; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..12)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((2*Pi*sqrt(5 - 2/sqrt(5))/5 - 4)*n) * n^(5*n+5).

A323544 a(n) = Product_{k=0..n} (k^6 + (n-k)^6).

Original entry on oeis.org

0, 1, 8192, 2245338225, 1144394036019200, 2577023355527587890625, 13410804447068120796679372800, 172661401915668867785003701060950625, 4548909593429214367033270472265433088000000, 234845240509381890690238640158397433600579682850625
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000540 and A259109 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^6 + (n-k)^6): k in [0..n]]): n in [0..10]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^6+(n-k)^6, {k, 0, n}], {n, 0, 10}]
  • PARI
    m=6; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=6; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp(((15 - 4*sqrt(3))*Pi/6 - 6)*n) * n^(6*n+6).

A323545 a(n) = Product_{k=0..n} (k^7 + (n-k)^7).

Original entry on oeis.org

0, 1, 32768, 79593387129, 328983774635229184, 8781626117710113525390625, 570409595340477623191338982834176, 112244673425189306235795780017831813874289, 49449149324106963036650868175987491957290049732608, 48527312221741371319651099141827554314119977393170380398241
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000541 (with sum instead of product).

Programs

  • Magma
    m:=7; [(&*[k^m + (n-k)^m: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Jan 18 2019
    
  • Mathematica
    Table[Product[k^7+(n-k)^7, {k, 0, n}], {n, 0, 10}]
  • PARI
    m=7; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=7; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((8*cos((Pi + arctan(2769*sqrt(3)/239))/6)*Pi/sqrt(21)-6)*n) * n^(7*n+7).
Equivalently, a(n) ~ exp((4*Pi*sqrt(2*(13 + 19*sin(Pi/14) - sin(3*Pi/14))/7)/7 - 6)*n) * n^(7*n+7). - Vaclav Kotesovec, Jan 23 2019

A272244 a(n) = Product_{k=0..n} (n^2 + k^2).

Original entry on oeis.org

0, 2, 160, 21060, 4352000, 1313845000, 547573478400, 301758856490000, 212663770808320000, 186659516597629140000, 199722414913149440000000, 255947740845844788169000000, 387074162712817024892928000000, 682170272459193898736228210000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^2+k^2,{k,0,n}],{n,0,15}]

Formula

a(n) ~ 2^(n + 1/2) * n^(2*(n+1)) / exp((4-Pi)*n/2).

A323575 a(n) = Product_{k=1..n} (k^k + (n-k)^k).

Original entry on oeis.org

1, 1, 8, 405, 229376, 1827109375, 257063481999360, 755170478103207873707, 54143353027014803410072371200, 107483342384971486221625795626923693445, 6647872853044955947850033397760000000000000000000, 14166017880429890423491783342799863539312599105433301729629445
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[k^k +(n-k)^k: k in [1..n]]): n in [1..12]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    Table[Product[k^k+(n-k)^k, {k, 1, n}], {n, 0, 12}]
  • PARI
    vector(12, n, n--; prod(k=1,n, k^k+(n-k)^k)) \\ G. C. Greubel, Feb 08 2019
    
  • Sage
    [product(k^k +(n-k)^k for k in (1..n)) for n in (0..12)] # G. C. Greubel, Feb 08 2019

Formula

a(n) ~ c * n^(n*(n+1)/2) * 2^(n^2/2) / exp(n^2/2), where c = A303641 = 2.473655256632129487637893694272428036362097123254579382787777122619864038942...

A320345 a(n) = Product_{k=0..n} (k^9 + (n-k)^9).

Original entry on oeis.org

0, 1, 524288, 101957062669641, 27265063485978531856384, 106913106903205778598785400390625, 1052153174824916171740710027027385486934016, 50134911460309737788263856880351450247312603708106641, 6079819706045473432785376698707222441479676085024627875693723648
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^9+(n-k)^9, {k, 0, n}], {n, 0, 10}]

Formula

a(n) ~ exp((4*Pi*(sqrt(3) + 6*sin(Pi/9))/9 - 8)*n) * n^(9*n+9).
Showing 1-10 of 18 results. Next