cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A325169 Origin-to-boundary graph-distance of the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps left or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the minimum triangular partition contained inside the diagram.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[otb[Reverse[primeMS[n]]],{n,100}]

Formula

A257990(n) <= a(n) <= 2 * A257990(n).

A325164 Heinz numbers of integer partitions with Durfee square of length 2.

Original entry on oeis.org

9, 15, 18, 21, 25, 27, 30, 33, 35, 36, 39, 42, 45, 49, 50, 51, 54, 55, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 126, 129, 130, 132, 133, 135, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also positions of 2 in A257990.
First differs from A105441 in lacking 125.
The Durfee length 1 case is A093641. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.

Examples

			The sequence of terms together with their prime indices begins:
   9: {2,2}
  15: {2,3}
  18: {1,2,2}
  21: {2,4}
  25: {3,3}
  27: {2,2,2}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
  39: {2,6}
  42: {1,2,4}
  45: {2,2,3}
  49: {4,4}
  50: {1,3,3}
  51: {2,7}
  54: {1,2,2,2}
  55: {3,5}
  57: {2,8}
  60: {1,1,2,3}
		

Crossrefs

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    Select[Range[100],durf[#]==2&]

A325168 Number of integer partitions of n with origin-to-boundary graph-distance equal to 2.

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 121
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps left or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside it.

Examples

			The a(3) = 1 through a(10) = 16 partitions:
  (21)  (22)   (32)    (33)     (43)      (44)       (54)        (55)
        (31)   (41)    (42)     (52)      (53)       (63)        (64)
        (211)  (221)   (51)     (61)      (62)       (72)        (73)
               (311)   (222)    (511)     (71)       (81)        (82)
               (2111)  (411)    (2221)    (611)      (711)       (91)
                       (2211)   (4111)    (2222)     (6111)      (811)
                       (3111)   (22111)   (5111)     (22221)     (7111)
                       (21111)  (31111)   (22211)    (51111)     (22222)
                                (211111)  (41111)    (222111)    (61111)
                                          (221111)   (411111)    (222211)
                                          (311111)   (2211111)   (511111)
                                          (2111111)  (3111111)   (2221111)
                                                     (21111111)  (4111111)
                                                                 (22111111)
                                                                 (31111111)
                                                                 (211111111)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]==2&]],{n,0,30}]
  • PARI
    concat([0,0,0], Vec(x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)) + O(x^80))) \\ Colin Barker, Apr 08 2019

Formula

From Colin Barker, Apr 08 2019: (Start)
G.f.: x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7.
a(n) = 2*n - 4 for n>4 and even.
a(n) = 2*n - 5 for n>4 and odd.
(End)

A325197 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 14, 21, 24, 25, 27, 28, 35, 36, 40, 54, 56, 66, 98, 99, 110, 120, 125, 132, 135, 147, 154, 165, 168, 175, 180, 189, 196, 198, 200, 220, 225, 231, 245, 250, 252, 264, 270, 275, 280, 297, 300, 308, 375, 378, 385, 390, 392, 396, 440, 450, 500, 546, 585, 594
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325199.

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   14: {1,4}
   21: {2,4}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   35: {3,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   66: {1,2,5}
   98: {1,4,4}
   99: {2,2,5}
  110: {1,3,5}
  120: {1,1,1,2,3}
  125: {3,3,3}
  132: {1,1,2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==2&]

A325180 Heinz number of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 10, 12, 20, 21, 35, 36, 42, 49, 54, 60, 63, 70, 81, 84, 90, 98, 100, 105, 126, 135, 140, 147, 150, 189, 196, 210, 225, 275, 294, 315, 385, 441, 500, 539, 550, 605, 700, 750, 770, 825, 847, 980, 1050, 1078, 1100, 1125, 1155, 1210, 1250, 1331, 1372, 1375
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325182.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   20: {1,1,3}
   21: {2,4}
   35: {3,4}
   36: {1,1,2,2}
   42: {1,2,4}
   49: {4,4}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   81: {2,2,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
  105: {2,3,4}
		

Crossrefs

Numbers k such that A263297(k) - A257990(k) = 2.
Positions of 2's in A325178.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Select[Range[1000],codurf[#]-durf[#]==2&]

A307386 Heinz numbers of integer partitions with Durfee square of length 3.

Original entry on oeis.org

125, 175, 245, 250, 275, 325, 343, 350, 375, 385, 425, 455, 475, 490, 500, 525, 539, 550, 575, 595, 605, 625, 637, 650, 665, 686, 700, 715, 725, 735, 750, 770, 775, 805, 825, 833, 845, 847, 850, 875, 910, 925, 931, 935, 950, 975, 980, 1000, 1001, 1015, 1025
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The Durfee square of an integer partition is the largest square contained in its Young diagram.

Examples

			The sequence of terms together with their prime indices begins:
  125: {3,3,3}
  175: {3,3,4}
  245: {3,4,4}
  250: {1,3,3,3}
  275: {3,3,5}
  325: {3,3,6}
  343: {4,4,4}
  350: {1,3,3,4}
  375: {2,3,3,3}
  385: {3,4,5}
  425: {3,3,7}
  455: {3,4,6}
  475: {3,3,8}
  490: {1,3,4,4}
  500: {1,1,3,3,3}
  525: {2,3,3,4}
  539: {4,4,5}
  550: {1,3,3,5}
  575: {3,3,9}
  595: {3,4,7}
		

Crossrefs

Positions of 3 in A257990. The Durfee length 1 case is A093641. The Durfee length 2 case is A325164. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    Select[Range[100],durf[#]==3&]

A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2.

Original entry on oeis.org

3, 4, 15, 18, 21, 25, 27, 33, 36, 39, 51, 57, 69, 72, 87, 93, 105, 111, 123, 129, 141, 144, 147, 150, 159, 165, 175, 177, 183, 195, 201, 213, 219, 225, 231, 237, 245, 249, 250, 255, 267, 273, 275, 285, 288, 291, 300, 303, 309, 321, 325, 327, 339, 343, 345, 357
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   25: {3,3}
   27: {2,2,2}
   33: {2,5}
   36: {1,1,2,2}
   39: {2,6}
   51: {2,7}
   57: {2,8}
   69: {2,9}
   72: {1,1,1,2,2}
   87: {2,10}
   93: {2,11}
  105: {2,3,4}
  111: {2,12}
  123: {2,13}
  129: {2,14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1];
    corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0];
    Select[Range[100],Apply[Plus,If[#==1,{},FixedPointList[corpos,ptnmat[primeptn[#]]][[-3]]],{0,1}]==2&]

A307515 Heinz numbers of integer partitions with Durfee square of length > 2.

Original entry on oeis.org

125, 175, 245, 250, 275, 325, 343, 350, 375, 385, 425, 455, 475, 490, 500, 525, 539, 550, 575, 595, 605, 625, 637, 650, 665, 686, 700, 715, 725, 735, 750, 770, 775, 805, 825, 833, 845, 847, 850, 875, 910, 925, 931, 935, 950, 975, 980, 1000, 1001, 1015, 1025
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

First differs from A307386 in having 7^4 = 2401.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The Durfee square of an integer partition is the largest square contained in its Young diagram.
The enumeration of these partitions by sum is given by A084835.

Examples

			The sequence of terms together with their prime indices begins:
  125: {3,3,3}
  175: {3,3,4}
  245: {3,4,4}
  250: {1,3,3,3}
  275: {3,3,5}
  325: {3,3,6}
  343: {4,4,4}
  350: {1,3,3,4}
  375: {2,3,3,3}
  385: {3,4,5}
  425: {3,3,7}
  455: {3,4,6}
  475: {3,3,8}
  490: {1,3,4,4}
  500: {1,1,3,3,3}
  525: {2,3,3,4}
  539: {4,4,5}
  550: {1,3,3,5}
  575: {3,3,9}
  595: {3,4,7}
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Positions of numbers > 2 in A257990.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]];
    Select[Range[100], durf[#]>2&]

A307373 Heinz numbers of integer partitions with at least three parts, the third of which is 2.

Original entry on oeis.org

27, 45, 54, 63, 75, 81, 90, 99, 105, 108, 117, 126, 135, 147, 150, 153, 162, 165, 171, 180, 189, 195, 198, 207, 210, 216, 225, 231, 234, 243, 252, 255, 261, 270, 273, 279, 285, 294, 297, 300, 306, 315, 324, 330, 333, 342, 345, 351, 357, 360, 363, 369, 378, 387
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A006918 (see Emeric Deutsch's comment there).

Examples

			The sequence of terms together with their prime indices begins:
   27: {2,2,2}
   45: {2,2,3}
   54: {1,2,2,2}
   63: {2,2,4}
   75: {2,3,3}
   81: {2,2,2,2}
   90: {1,2,2,3}
   99: {2,2,5}
  105: {2,3,4}
  108: {1,1,2,2,2}
  117: {2,2,6}
  126: {1,2,2,4}
  135: {2,2,2,3}
  147: {2,4,4}
  150: {1,2,3,3}
  153: {2,2,7}
  162: {1,2,2,2,2}
  165: {2,3,5}
  171: {2,2,8}
  180: {1,1,2,2,3}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]>=3&&Reverse[primeMS[#]][[3]]==2&]
Showing 1-9 of 9 results.