cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A326641 Number of integer partitions of n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 2, 4, 3, 6, 2, 7, 2, 4, 5, 6, 2, 6, 2, 10, 6, 4, 2, 11, 4, 6, 5, 8, 2, 15, 2, 10, 6, 6, 8, 16, 2, 4, 8, 20, 2, 17, 2, 8, 17, 4, 2, 27, 9, 20, 8, 14, 2, 21, 10, 35, 10, 6, 2, 48, 2, 4, 41, 39, 12, 28, 2, 17, 10, 64, 2, 103, 2, 6, 23
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326645.

Examples

			The a(4) = 3 through a(10) = 6 partitions (A = 10):
  (4)     (5)      (6)       (7)        (8)         (9)          (A)
  (22)    (11111)  (33)      (1111111)  (44)        (333)        (55)
  (1111)           (222)                (2222)      (111111111)  (82)
                   (111111)             (11111111)               (91)
                                                                 (22222)
                                                                 (1111111111)
		

Crossrefs

Partitions with integer mean are A067538.
Partitions with integer geometric mean are A067539.
Non-constant partitions with integer mean and geometric mean are A326642.
Subsets with integer mean and geometric mean are A326643.
Heinz numbers of partitions with integer mean and geometric mean are A326645.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 183, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326641.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
   46: {1,9}
   47: {15}
   49: {4,4}
		

Crossrefs

Heinz numbers of partitions with integer mean are A316413.
Heinz numbers of partitions with integer geometric mean are A326623.
Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
Partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&]

A326647 Number of factorizations of n into factors > 1 with integer average and integer geometric mean.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(216) = 5 factorizations:
  (2*4*27)
  (3*3*24)
  (3*6*12)
  (6*6*6)
  (216)
The a(729) = 8 factorizations:
  (3*3*3*3*3*3)
  (3*3*81)
  (3*9*27)
  (3*243)
  (9*9*9)
  (9*81)
  (27*27)
  (729)
		

Crossrefs

Positions of terms > 1 are the perfect powers A001597.
Factorizations with integer average are A326622.
Factorizations with integer geometric mean are A326028.
Partitions with integer average and geometric mean are A326641.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,2,100}]

A326029 Number of strict integer partitions of n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 3, 1, 3, 1, 1, 3, 6, 1, 3, 1, 2, 1, 1, 1, 3, 1, 6, 1, 5, 1, 2, 2, 2, 4, 3, 1, 9, 1, 1, 3, 1, 1, 4, 1, 4, 2, 6, 1, 6, 1, 3, 7, 4, 2, 5, 1, 10, 1, 3, 1, 9, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(55) = 2 through a(60) = 9 partitions:
  (55)           (56)         (57)        (58)    (59)  (60)
  (27,16,9,2,1)  (24,18,8,6)  (49,7,1)    (49,9)        (54,6)
                              (27,25,5)   (50,8)        (48,12)
                              (27,18,12)                (27,24,9)
                                                        (27,24,6,2,1)
                                                        (36,12,9,2,1)
                                                        (36,9,6,4,3,2)
                                                        (24,18,9,6,2,1)
                                                        (27,16,9,4,3,1)
		

Crossrefs

Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean are A102627.
Strict partitions with integer geometric mean are A326625.
Non-constant partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Heinz numbers of partitions with integer mean and geometric mean are A326645.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A326644 Number of subsets of {1..n} containing n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 6, 5, 1, 23, 1, 1, 1, 1, 28, 1, 1, 1, 38, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 1, 81, 8, 28, 1, 1, 1, 126, 1, 6, 1, 1, 1, 37, 1, 1, 6, 208, 1, 1, 1, 1, 1, 1, 1, 351, 1, 1, 381, 1, 1, 1, 1, 159, 605, 1, 1, 9, 1, 1, 1, 2, 1, 1223, 1, 1, 1, 1, 1, 805, 1, 113, 2, 5021, 1, 1, 1, 2, 1, 1, 1, 2630, 1, 1, 1, 54, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 3 subsets:
  {1}  {2}  {3}  {4}  {5}  {6}  {7}  {8}    {9}    {10}  {11}  {12}
                                     {2,8}  {1,9}              {3,6,12}
                                                               {3,4,9,12}
The a(18) = 7 subsets:
  {18}
  {2,18}
  {8,18}
  {1,8,9,18}
  {2,3,8,9,18}
  {6,12,16,18}
  {2,3,4,9,12,18}
		

Crossrefs

First differences of A326643.
Subsets whose mean is an integer are A051293.
Subsets whose geometric mean is an integer are A326027.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A326666 Numbers k such that there exists a factorization of k into factors > 1 whose mean is not an integer but whose geometric mean is an integer.

Original entry on oeis.org

36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 512, 576, 676, 784, 900, 1000, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2744, 2916, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400, 6724
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			36 has two such factorizations: (3*12) and (4*9).
The sequence of terms together with their prime indices begins:
    36: {1,1,2,2}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   144: {1,1,1,1,2,2}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   324: {1,1,2,2,2,2}
   400: {1,1,1,1,3,3}
   484: {1,1,5,5}
   512: {1,1,1,1,1,1,1,1,1}
   576: {1,1,1,1,1,1,2,2}
   676: {1,1,6,6}
   784: {1,1,1,1,4,4}
   900: {1,1,2,2,3,3}
  1000: {1,1,1,3,3,3}
  1024: {1,1,1,1,1,1,1,1,1,1}
  1156: {1,1,7,7}
  1296: {1,1,1,1,2,2,2,2}
  1444: {1,1,8,8}
		

Crossrefs

A subsequence of A001597.
Factorizations with integer mean are A326622.
Factorizations with integer geometric mean are A326028.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Length[Select[facs[#],!IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]]>1&]

A326646 Heinz numbers of non-constant integer partitions whose mean and geometric mean are both integers.

Original entry on oeis.org

46, 57, 183, 194, 228, 371, 393, 454, 515, 687, 742, 838, 1057, 1064, 1077, 1150, 1157, 1159, 1244, 1322, 1563, 1895, 2018, 2060, 2116, 2157, 2163, 2167, 2177, 2225, 2231, 2405, 2489, 2854, 2859, 3249, 3263, 3339, 3352, 3558, 3669, 3758, 3787, 3914, 4265, 4351
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326642.

Examples

			The sequence of terms together with their prime indices begins:
    46: {1,9}
    57: {2,8}
   183: {2,18}
   194: {1,25}
   228: {1,1,2,8}
   371: {4,16}
   393: {2,32}
   454: {1,49}
   515: {3,27}
   687: {2,50}
   742: {1,4,16}
   838: {1,81}
  1057: {4,36}
  1064: {1,1,1,4,8}
  1077: {2,72}
  1150: {1,3,3,9}
  1157: {6,24}
  1159: {8,18}
  1244: {1,1,64}
  1322: {1,121}
		

Crossrefs

Heinz numbers of partitions with integer mean and geometric mean are A326645.
Heinz numbers of partitions with integer mean are A316413.
Heinz numbers of partitions with integer geometric mean are A326623.
Non-constant partitions with integer mean and geometric mean are A326642.
Subsets with integer mean and geometric mean are A326643.
Strict partitions with integer mean and geometric mean are A326029.

A326642 Number of non-constant integer partitions of n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 0, 0, 4, 2, 0, 0, 3, 1, 2, 1, 2, 0, 7, 0, 4, 2, 2, 4, 7, 0, 0, 4, 12, 0, 9, 0, 2, 11, 0, 0, 17, 6, 14, 4, 8, 0, 13, 6, 27, 6, 2, 0, 36, 0, 0, 35, 32, 8, 20, 0, 11, 6, 56, 0, 91, 0, 2, 17
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326646.

Examples

			The a(30) = 7 partitions:
  (27,3)
  (24,6)
  (24,3,3)
  (16,8,2,2,2)
  (9,9,9,1,1,1)
  (8,8,8,2,2,2)
  (8,8,4,4,1,1,1,1,1,1)
		

Crossrefs

Partitions with integer mean and geometric mean are A326641.
Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
Non-constant partitions with integer geometric mean are A326624.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

Formula

a(n) = A326641(n) - A000005(n).

A327368 The positions of ones in the reversed binary expansion of n have integer mean and integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 130, 256, 257, 512, 1024, 2048, 2084, 2316, 4096, 8192, 16384, 32768, 32776, 32777, 65536, 131072, 131074, 131200, 131457, 131462, 133390, 165920, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 8388640, 8388897, 8390688, 8519840
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2019

Keywords

Examples

			The sequence of terms together with their binary indices begins:
  2      {2}
  4      {3}
  8      {4}
  16     {5}
  32     {6}
  64     {7}
  128    {8}
  130    {2,8}
  256    {9}
  257    {1,9}
  512    {10}
  1024   {11}
  2048   {12}
  2084   {3,6,12}
  2316   {3,4,9,12}
  4096   {13}
  8192   {14}
  16384  {15}
  32768  {16}
  32776  {4,16}
		

Crossrefs

A superset of A327777.
Numbers whose binary indices have integer mean: A326669
Numbers whose binary indices have integer geometric mean: A326673

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&]
  • PARI
    ok(n)={my(s=0,p=1,k=0); for(i=0, logint(n,2), if(bittest(n,i), s+=i+1; p*=i+1; k++)); s%k==0 && ispower(p,k)}
    { for(n=1, 10^7, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Sep 29 2019

Extensions

a(33)-a(40) from Andrew Howroyd, Sep 29 2019

A327777 Prime numbers whose binary indices have integer mean and integer geometric mean.

Original entry on oeis.org

2, 257, 8519971, 36574494881, 140739702949921, 140773995710729, 140774004099109
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Conjecture: This sequence is infinite.

Examples

			The initial terms together with their binary indices:
                2: {2}
              257: {1,9}
          8519971: {1,2,6,9,18,24}
      36574494881: {1,6,8,16,18,27,32,36}
  140739702949921: {1,6,12,27,32,48}
  140773995710729: {1,4,9,12,18,32,36,48}
  140774004099109: {1,3,6,12,18,24,32,36,48}
		

Crossrefs

A subset of A327368.
The binary weight of prime(n) is A014499(n), with binary length A035100(n).
Heinz numbers of partitions with integer mean: A316413.
Heinz numbers of partitions with integer geometric mean: A326623.
Heinz numbers with both: A326645.
Subsets with integer mean: A051293
Subsets with integer geometric mean: A326027
Subsets with both: A326643
Partitions with integer mean: A067538
Partitions with integer geometric mean: A067539
Partitions with both: A326641
Strict partitions with integer mean: A102627
Strict partitions with integer geometric mean: A326625
Strict partitions with both: A326029
Factorizations with integer mean: A326622
Factorizations with integer geometric mean: A326028
Factorizations with both: A326647
Numbers whose binary indices have integer mean: A326669
Numbers whose binary indices have integer geometric mean: A326673
Numbers whose binary indices have both: A327368

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Prime[Range[1000]],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&]

Extensions

a(4)-a(7) from Giovanni Resta, Dec 01 2019
Showing 1-10 of 11 results. Next