cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A349156 Number of integer partitions of n whose mean is not an integer.

Original entry on oeis.org

1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
By conjugation, also the number of integer partitions of n with greatest part not dividing n.

Examples

			The a(3) = 1 through a(8) = 11 partitions:
  (21)  (211)  (32)    (2211)   (43)      (332)
               (41)    (3111)   (52)      (422)
               (221)   (21111)  (61)      (431)
               (311)            (322)     (521)
               (2111)           (331)     (611)
                                (421)     (22211)
                                (511)     (32111)
                                (2221)    (41111)
                                (3211)    (221111)
                                (4111)    (311111)
                                (22111)   (2111111)
                                (31111)
                                (211111)
		

Crossrefs

Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !A051293.
The complement is counted by A067538, ranked by A316413.
The geometric version is !A067539, strict !A326625, ranked by !A326623.
The strict case is !A102627.
The version for prime factors is A175352, complement A078175.
The version for distinct prime factors is A176587, complement A078174.
The ordered version (compositions) is !A271654, ranked by !A096199.
The multiplicative version (factorizations) is !A326622, geometric !A326028.
The conjugate is ranked by !A326836.
The conjugate strict version is !A326850.
These partitions are ranked by A348551.
A000041 counts integer partitions.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A236634 counts unbalanced partitions, complement of A047993.
A327472 counts partitions not containing their mean, complement of A237984.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]

Formula

a(n > 0) = A000041(n) - A067538(n).

A067539 Number of partitions of n in which, if the number of parts is k, the product of the parts is the k-th power of some positive integer.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 4, 4, 8, 3, 8, 5, 7, 8, 8, 7, 9, 8, 17, 11, 11, 8, 16, 17, 17, 14, 18, 17, 26, 19, 24, 20, 30, 28, 32, 27, 37, 35, 48, 37, 45, 37, 51, 51, 58, 50, 64, 62, 83, 73, 84, 69, 91, 89, 101, 97, 116, 111, 136, 123, 142, 138, 160, 161, 181, 171, 205, 199, 231, 221
Offset: 1

Views

Author

Naohiro Nomoto, Jan 27 2002

Keywords

Comments

a(n) is the number of integer partitions of n whose geometric mean is an integer. - Gus Wiseman, Jul 19 2019

Examples

			From _Gus Wiseman_, Jul 19 2019: (Start)
The a(1) = 1 through a(8) = 4 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (41)     (33)      (421)      (44)
                    (1111)  (11111)  (222)     (1111111)  (2222)
                                     (111111)             (11111111)
(End)
		

Crossrefs

Partitions with integer average are A067538.
Subsets whose geometric mean is an integer are A326027.
The Heinz numbers of these partitions are A326623.
The strict case is A326625.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,30}] (* Gus Wiseman, Jul 19 2019 *)
  • Python
    from math import prod
    from sympy import integer_nthroot
    from sympy.utilities.iterables import partitions
    def A067539(n): return sum(1 for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) # Chai Wah Wu, Sep 24 2023

Extensions

Terms a(61) onwards from Max Alekseyev, Feb 06 2010

A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 183, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326641.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
   46: {1,9}
   47: {15}
   49: {4,4}
		

Crossrefs

Heinz numbers of partitions with integer mean are A316413.
Heinz numbers of partitions with integer geometric mean are A326623.
Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
Partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&]

A326647 Number of factorizations of n into factors > 1 with integer average and integer geometric mean.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(216) = 5 factorizations:
  (2*4*27)
  (3*3*24)
  (3*6*12)
  (6*6*6)
  (216)
The a(729) = 8 factorizations:
  (3*3*3*3*3*3)
  (3*3*81)
  (3*9*27)
  (3*243)
  (9*9*9)
  (9*81)
  (27*27)
  (729)
		

Crossrefs

Positions of terms > 1 are the perfect powers A001597.
Factorizations with integer average are A326622.
Factorizations with integer geometric mean are A326028.
Partitions with integer average and geometric mean are A326641.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,2,100}]

A326643 Number of subsets of {1..n} whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 31, 32, 33, 34, 35, 41, 46, 47, 70, 71, 72, 73, 74, 102, 103, 104, 105, 143, 144, 145, 146, 151, 152, 153, 154, 155, 161, 162, 163, 244, 252, 280, 281, 282, 283, 409, 410, 416, 417, 418, 419
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 16 subsets:
  {1}  {1}  {1}  {1}  {1}  {1}  {1}  {1}    {1}    {1}    {1}    {1}
       {2}  {2}  {2}  {2}  {2}  {2}  {2}    {2}    {2}    {2}    {2}
            {3}  {3}  {3}  {3}  {3}  {3}    {3}    {3}    {3}    {3}
                 {4}  {4}  {4}  {4}  {4}    {4}    {4}    {4}    {4}
                      {5}  {5}  {5}  {5}    {5}    {5}    {5}    {5}
                           {6}  {6}  {6}    {6}    {6}    {6}    {6}
                                {7}  {7}    {7}    {7}    {7}    {7}
                                     {8}    {8}    {8}    {8}    {8}
                                     {2,8}  {9}    {9}    {9}    {9}
                                            {1,9}  {10}   {10}   {10}
                                            {2,8}  {1,9}  {11}   {11}
                                                   {2,8}  {1,9}  {12}
                                                          {2,8}  {1,9}
                                                                 {2,8}
                                                                 {3,6,12}
                                                                 {3,4,9,12}
		

Crossrefs

Partial sums of A326644.
Subsets whose geometric mean is an integer are A326027.
Subsets whose mean is an integer are A051293.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1

Views

Author

Keywords

Comments

Also the number of compositions of n whose length divides n, i.e., compositions with integer mean, ranked by A096199. - Gus Wiseman, Sep 28 2022

Examples

			From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,1,1)  (1,3)      (1,1,1,1,1)  (1,5)
                       (2,2)                   (2,4)
                       (3,1)                   (3,3)
                       (1,1,1,1)               (4,2)
                                               (5,1)
                                               (1,1,4)
                                               (1,2,3)
                                               (1,3,2)
                                               (1,4,1)
                                               (2,1,3)
                                               (2,2,2)
                                               (2,3,1)
                                               (3,1,2)
                                               (3,2,1)
                                               (4,1,1)
                                               (1,1,1,1,1,1)
(End)
		

Crossrefs

Cf. A056045.
The version for nonempty subsets is A051293, geometric A326027.
The version for partitions is A067538, ranked by A316413, strict A102627.
These compositions are ranked by A096199.
The version for factorizations is A326622, geometric A326028.
A011782 counts compositions.
A067539 = partitions w integer geo mean, ranked by A326623, strict A326625.
A100346 counts compositions into divisors, partitions A018818.

Programs

  • Maple
    a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 03 2023
  • Mathematica
    Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
  • PARI
    a(n)=sumdiv(n,k,binomial(n-1,k-1))

A326029 Number of strict integer partitions of n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 3, 1, 3, 1, 1, 3, 6, 1, 3, 1, 2, 1, 1, 1, 3, 1, 6, 1, 5, 1, 2, 2, 2, 4, 3, 1, 9, 1, 1, 3, 1, 1, 4, 1, 4, 2, 6, 1, 6, 1, 3, 7, 4, 2, 5, 1, 10, 1, 3, 1, 9, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(55) = 2 through a(60) = 9 partitions:
  (55)           (56)         (57)        (58)    (59)  (60)
  (27,16,9,2,1)  (24,18,8,6)  (49,7,1)    (49,9)        (54,6)
                              (27,25,5)   (50,8)        (48,12)
                              (27,18,12)                (27,24,9)
                                                        (27,24,6,2,1)
                                                        (36,12,9,2,1)
                                                        (36,9,6,4,3,2)
                                                        (24,18,9,6,2,1)
                                                        (27,16,9,4,3,1)
		

Crossrefs

Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean are A102627.
Strict partitions with integer geometric mean are A326625.
Non-constant partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Heinz numbers of partitions with integer mean and geometric mean are A326645.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A326644 Number of subsets of {1..n} containing n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 6, 5, 1, 23, 1, 1, 1, 1, 28, 1, 1, 1, 38, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 1, 81, 8, 28, 1, 1, 1, 126, 1, 6, 1, 1, 1, 37, 1, 1, 6, 208, 1, 1, 1, 1, 1, 1, 1, 351, 1, 1, 381, 1, 1, 1, 1, 159, 605, 1, 1, 9, 1, 1, 1, 2, 1, 1223, 1, 1, 1, 1, 1, 805, 1, 113, 2, 5021, 1, 1, 1, 2, 1, 1, 1, 2630, 1, 1, 1, 54, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 3 subsets:
  {1}  {2}  {3}  {4}  {5}  {6}  {7}  {8}    {9}    {10}  {11}  {12}
                                     {2,8}  {1,9}              {3,6,12}
                                                               {3,4,9,12}
The a(18) = 7 subsets:
  {18}
  {2,18}
  {8,18}
  {1,8,9,18}
  {2,3,8,9,18}
  {6,12,16,18}
  {2,3,4,9,12,18}
		

Crossrefs

First differences of A326643.
Subsets whose mean is an integer are A051293.
Subsets whose geometric mean is an integer are A326027.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A326666 Numbers k such that there exists a factorization of k into factors > 1 whose mean is not an integer but whose geometric mean is an integer.

Original entry on oeis.org

36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 512, 576, 676, 784, 900, 1000, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2744, 2916, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400, 6724
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			36 has two such factorizations: (3*12) and (4*9).
The sequence of terms together with their prime indices begins:
    36: {1,1,2,2}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   144: {1,1,1,1,2,2}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   324: {1,1,2,2,2,2}
   400: {1,1,1,1,3,3}
   484: {1,1,5,5}
   512: {1,1,1,1,1,1,1,1,1}
   576: {1,1,1,1,1,1,2,2}
   676: {1,1,6,6}
   784: {1,1,1,1,4,4}
   900: {1,1,2,2,3,3}
  1000: {1,1,1,3,3,3}
  1024: {1,1,1,1,1,1,1,1,1,1}
  1156: {1,1,7,7}
  1296: {1,1,1,1,2,2,2,2}
  1444: {1,1,8,8}
		

Crossrefs

A subsequence of A001597.
Factorizations with integer mean are A326622.
Factorizations with integer geometric mean are A326028.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Length[Select[facs[#],!IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]]>1&]
Showing 1-10 of 18 results. Next