A345697
Expansion of the e.g.f. sqrt(1 / (2*exp(x) - 2*x*exp(x) - 1)).
Original entry on oeis.org
1, 0, 1, 2, 12, 64, 485, 4038, 39991, 441992, 5492322, 75171700, 1127989577, 18381446004, 323527186957, 6114296752718, 123513004310640, 2655648779976640, 60554669008300565, 1459559515622280282, 37079264125376670955, 990226180225789628660, 27733277682719819190246, 812818183963966524137332, 24880254143735238825011057
Offset: 0
sqrt(1/(2*exp(x)-2*x*exp(x)-1)) = 1 + x^2/2! + 2*x^3/3! + 12*x^4/4! + 64*x^5/5! + 485*x^6/6! + 4038*x^7/7! + 39991*x^8/8! + 441992*x^9/9! + ...
a(13) = Sum_{k=1..6} A014307(k)*A008306(13,k) = 18381446004.
A014307(1)*A008306(13,1) == -1 (mod 13), because A014307(1) = 1 and A008306(13,1) = (13-1)!
For k>=2, A008306(13,k) == 0 (mod 13), result a(13) == -1 (mod 13).
-
A014307 := proc(n) option remember; `if`(n=0, 1 , 1+add((-1+binomial(n, k))*A014307(k), k=1..n-1)) end:
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a := n-> add((A014307(k)*A008306(n,k)), k=1..floor(n/2)):a(0):=1 ;
seq(a(n), n=0..24);
# second program:
a := series(sqrt((1/(2*exp(x)-2*x*exp(x)-1))), x=0, 25):
seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[Sqrt[1/(2*E^x-2*x*E^x-1)], {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^25)); Vec(serlaplace(sqrt(1 / (2*exp(x) - 2*x*exp(x) -1)))) \\ Michel Marcus, Jun 24 2021
A345652
Expansion of the e.g.f. exp(-1 + (x + 1)*exp(-x)).
Original entry on oeis.org
1, 0, -1, 2, 0, -16, 65, -78, -749, 6232, -22068, -28920, 1004685, -7408740, 22263215, 157632230, -2874256740, 21590948480, -53087332675, -956539294506, 16344490525835, -132605481091060, 294656170409328, 9113173803517344, -167298122286332823
Offset: 0
exp(-1+(x+1)*exp(-x)) = 1 - x^2/2! + 2*x^3/3! - 16*x^5/5! + 65*x^6/6! - 78*x^7/7! - 749*x^8/8! + 6232*x^9/9! + ...
Cf.
A292935 (without 1+x: EGF e^(e^(-x)-1)),
A000110 (absolute values: Bell numbers, EGF e^(e^x-1))
-
a := series(exp(-1+(x+1)*exp(-x)), x=0, 25): seq(n!*coeff(a, x, n), n=0..24);
a := proc(n) option remember; `if`(n=0, 1, add((n-1)*binomial(n-2, k)*(-1)^(n-1-k)*a(k), k=0..n-2)) end: seq(a(n), n=0..24);
# third program:
A345652 := n -> add((-1)^(n-k)*combinat[bell](k)*A106828(n, k), k=0..iquo(n, 2)):
seq(A345652(n), n=0..24); # Mélika Tebni, Sep 21 2021
-
nmax = 24; CoefficientList[Series[Exp[-1+(x+1)*Exp[-x]], {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n) = {Vec(serlaplace(exp(-1+(x+1)*exp(-x + O(x*x^n)))))} \\ Andrew Howroyd, Jun 21 2021
-
a(n) = if(n==0, 1, sum(k=2, n, (-1)^(k-1)*(k-1)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Mar 15 2022
A345969
Expansion of the e.g.f. 1 / sqrt(3 - 2 / ((1 - x)*exp(x))).
Original entry on oeis.org
1, 0, 1, 2, 18, 104, 1015, 9666, 116557, 1504856, 22300704, 358916480, 6373675825, 122332173300, 2540560235161, 56558354414870, 1346402030278050, 34093192112537888, 915570658175517151, 25983157665663651150, 777141557158947654637, 24430880483991543481580
Offset: 0
1/sqrt(3-2/((1-x)*exp(x))) = 1 + x^2/2! + 2*x^3/3! + 18*x^4/4! + 104*x^5/5! + 1015*x^6/6! + 9666*x^7/7! + 116557*x^8/8! + 1504856*x^9/9! + ...
a(17) = Sum_{k=1..8} A305404(k)*A008306(17,k) = 34093192112537888.
For k=1, A305404(1)*A008306(17,1) == -1 (mod 17), because A305404(1) = 1 and A008306(17,1) = (17-1)!
For k>=2, A305404(k)*A008306(17,k) == 0 (mod 17), because A008306(17,k) == 0 (mod 17), result a(17) == -1 (mod 17).
-
A305404:= n-> add(Stirling2(n,k)*doublefactorial(2*k-1), k=0..n):
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a := n-> add((A305404(k)*A008306(n, k)), k=1..iquo(n,2)):a(0):=1 ; seq(a(n), n=0..24);
# second program:
a := series(1/sqrt(3-2/((1-x)*exp(x))), x=0, 25):seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[1/Sqrt[3-2/((1-x)*E^x)], {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^30)); Vec(serlaplace(1/sqrt(3 - 2 / ((1 - x)*exp(x))))) \\ Michel Marcus, Jul 01 2021
A005387
Number of partitional matroids on n elements.
Original entry on oeis.org
1, 2, 5, 16, 62, 276, 1377, 7596, 45789, 298626, 2090910, 15621640, 123897413, 1038535174, 9165475893, 84886111212, 822648571314, 8321077557124, 87648445601429, 959450073912136, 10894692556576613, 128114221270929646
Offset: 0
- Recski, A.; Enumerating partitional matroids. Stud. Sci. Math. Hungar. 9 (1974), 247-249 (1975).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp((x-1)*Exp(x) + 2*x + 1) ))); // G. C. Greubel, Nov 16 2022
-
With[{nn=30},CoefficientList[Series[Exp[(x-1)E^x+2x+1],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Nov 22 2012 *)
-
def A005387_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp((x-1)*exp(x) + 2*x + 1) ).egf_to_ogf().list()
A005387_list(40) # G. C. Greubel, Nov 16 2022
A346119
Expansion of the e.g.f. sqrt(2*x*exp(x) - 2*exp(x) + 3).
Original entry on oeis.org
1, 0, 1, 2, 0, -16, -35, 342, 2779, -6424, -239382, -822460, 22393657, 278844084, -1553468891, -68399947042, -275025888900, 15302175612416, 243541868882077, -2463105309082902, -121649966081262521, -473088821582805820, 50905612811064360006, 945133249101683013812, -15321255878414345388335
Offset: 0
sqrt(2*x*exp(x)-2*exp(x)+3) = 1 + x^2/2! + 2*x^3/3! - 16*x^5/5! - 35*x^6/6! + 342*x^7/7! + 2779*x^8/8! - 6424*x^9/9! + ...
a(11) = Sum_{k=1..5} (-1)^(k-1)*A006677(k)*A008306(11,k) = -822460.
For k=1, (-1)^(1-1)*A006677(1)*A008306(11,1) == -1 (mod 11), because A006677(1) = 1 and A008306(11,1) = (11-1)!
For k>=2, (-1)^(k-1)*A006677(k)*A008306(11,k) == 0 (mod 11), because A008306(11,k) == 0 (mod 11), result a(11) == -1 (mod 11).
a(8) = Sum_{k=1..4} (-1)^(k-1)*A006677(k)*A008306(8,k) = 2779.
a(8) == 0 (mod (8-1)), because for k >= 1, A008306(8,k) == 0 (mod 7).
-
stirtr:= proc(p) proc(n) add(p(k)*Stirling2(n, k), k=0..n) end end: f:= n-> `if`(n=0, 1, (2*n-2)!/ (n-1)!/ 2^(n-1)): A006677:= stirtr(f): # Alois P. Heinz, 2008.
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a:= n-> add(((-1)^(k-1)*A006677(k)*A008306(n,k)), k=1..iquo(n,2)):a(0):=1 ; seq(a(n), n=0..24);
# second program:
a := series(sqrt(2*x*exp(x)-2*exp(x)+3), x=0, 25):seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[Sqrt(2*x*E^x-2*E^x+3), {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^30)); Vec(serlaplace(sqrt(2*x*exp(x) - 2*exp(x) + 3))) \\ Michel Marcus, Jul 05 2021
A343482
Expansion of the e.g.f. sqrt(-1 + 2 / (1 - x) / exp(x)).
Original entry on oeis.org
1, 0, 1, 2, 6, 24, 135, 930, 7105, 59192, 549360, 5746080, 66713361, 839528052, 11308954657, 163038260294, 2520332282910, 41640324943968, 730119174449151, 13507292654421390, 263004450921933817, 5385277610047242620, 115775314245285797256, 2606072891349667903152, 61248210450060537498321
Offset: 0
sqrt(-1+2/(1-x)/exp(x)) = 1 + x^2/2! + 2*x^3/3! + 6*x^4/4! + 24*x^5/5! + 135*x^6/6! + 930*x^7/7! + 7105*x^8/8! + 59192*x^9/9! + ...
a(23) = Sum_{k=1..11} (-1)^(k-1)*A014304(k-1)*A008306(23,k) = 2606072891349667903152.
For k=1, (-1)^(1-1)*A014304(1-1)*A008306(23,1) == -1 (mod 23), because A014304(0) = 1 and A008306(23,1) = (23-1)!
For k>=2, (-1)^(k-1)*A014304(k-1)*A008306(23,k) == 0 (mod 23), because A008306(23,k) == 0 (mod 23), result a(23) == -1 (mod 23).
a(18) = Sum_{k=1..9} (-1)^(k-1)*A014304(k-1)*A008306(18,k) = 730119174449151.
a(18) == 0 (mod (18-1)), because for k >= 1, A008306(18,k) == 0 (mod 17).
-
A014304:= proc(n) option remember; `if`(n=0, 1, (-1)^n + add(binomial(n,k)*A014304(k)* A014304(n-k-1), k=0..n-1)) end:
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a:= n-> add(((-1)^(k-1)*A014304(k-1)*A008306(n,k)), k=1..iquo(n,2)):a(0):=1 ; seq(a(n), n=0..24);
# second program:
a := series(sqrt(-1+2/(1-x)/exp(x)), x=0, 25):seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[Sqrt[-1+2/(1-x)/E^x], {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^30)); Vec(serlaplace(sqrt(-1 + 2 / (1 - x) / exp(x)))) \\ Michel Marcus, Jul 06 2021
A327005
T(n, k) = Sum_{i=1..n} BM[k][i] where BM is the BellMatrix(x -> x mod n) as defined in A264428. Square array read by ascending antidiagonals for n >= 1 and k >= 1.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 4, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 6, 21, 31, 0, 1, 0, 1, 2, 6, 20, 57, 0, 0, 1, 0, 1, 2, 6, 24, 101, 231, 379, 0, 1, 0, 1, 2, 6, 24, 100, 422, 1394, 0, 0, 1, 0, 1, 2, 6, 24, 105, 505, 2201, 5476, 6556, 0
Offset: 1
[1] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
[2] 1, 0, 1, 0, 4, 0, 31, 0, 379, 0, 6556, 0, ...
[3] 1, 0, 1, 2, 3, 21, 57, 231, 1394, 5476, 32616, 203105, ...
[4] 1, 0, 1, 2, 6, 20, 101, 422, 2201, 12560, 76846, 483892, ...
[5] 1, 0, 1, 2, 6, 24, 100, 505, 2620, 15383, 97480, 657305, ...
[6] 1, 0, 1, 2, 6, 24, 105, 504, 2759, 16186, 103494, 710384, ...
-
# BellMatrix is defined in A264428.
T := proc(n, k) BellMatrix(x -> modp(x, n), k): add(i, i in %[k]) end:
seq(seq(T(n-k+1,k), k=1..n), n=1..12);
Showing 1-7 of 7 results.
Comments