cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2014

Keywords

Crossrefs

Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    m = 16;
    egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
    A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    a[n_] := 2^(n(n-1)/2) - A059167[n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] (* Gus Wiseman, Sep 11 2019 *)

Formula

a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).

Extensions

a(9)-a(16) from Andrew Howroyd, Oct 26 2017

A327227 Number of labeled simple graphs covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.

Examples

			The a(4) = 31 edge-sets:
  {12,34}  {12,13,14}  {12,13,14,23}
  {13,24}  {12,13,24}  {12,13,14,24}
  {14,23}  {12,13,34}  {12,13,14,34}
           {12,14,23}  {12,13,23,24}
           {12,14,34}  {12,13,23,34}
           {12,23,24}  {12,14,23,24}
           {12,23,34}  {12,14,24,34}
           {12,24,34}  {12,23,24,34}
           {13,14,23}  {13,14,23,34}
           {13,14,24}  {13,14,24,34}
           {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
		

Crossrefs

Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A245797, if we assume A245797(0) = 0.

A327144 Spanning edge-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Positions of first appearances of each integer together with the corresponding set-systems:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

Dominated by A327103.
The same for cut-connectivity is A326786.
The same for non-spanning edge-connectivity is A326787.
The same for vertex-connectivity is A327051.
Positions of 1's are A327111.
Positions of 2's are A327108.
Positions of first appearance of each integer are A327147.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[spanEdgeConn[Union@@bpe/@bpe[n],bpe/@bpe[n]],{n,0,100}]

A327108 BII-numbers of set-systems with spanning edge-connectivity 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 772, 773, 774, 775, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 848, 849, 850
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

Differs from A327109 in lacking 116, 117, 118, 119, 124, 125, 126, 127, ...
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 2 together with their BII-numbers begins:
   52: {{1,2},{1,3},{2,3}}
   53: {{1},{1,2},{1,3},{2,3}}
   54: {{2},{1,2},{1,3},{2,3}}
   55: {{1},{2},{1,2},{1,3},{2,3}}
   60: {{1,2},{3},{1,3},{2,3}}
   61: {{1},{1,2},{3},{1,3},{2,3}}
   62: {{2},{1,2},{3},{1,3},{2,3}}
   63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   84: {{1,2},{1,3},{1,2,3}}
   85: {{1},{1,2},{1,3},{1,2,3}}
   86: {{2},{1,2},{1,3},{1,2,3}}
   87: {{1},{2},{1,2},{1,3},{1,2,3}}
   92: {{1,2},{3},{1,3},{1,2,3}}
   93: {{1},{1,2},{3},{1,3},{1,2,3}}
   94: {{2},{1,2},{3},{1,3},{1,2,3}}
   95: {{1},{2},{1,2},{3},{1,3},{1,2,3}}
  100: {{1,2},{2,3},{1,2,3}}
  101: {{1},{1,2},{2,3},{1,2,3}}
  102: {{2},{1,2},{2,3},{1,2,3}}
  103: {{1},{2},{1,2},{2,3},{1,2,3}}
		

Crossrefs

Positions of 2's in A327144.
Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with spanning edge-connectivity 2 are counted by A327146.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
BII-numbers for spanning edge-connectivity 1 are A327111.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==2&]

A327229 Number of set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 4, 50, 3069, 2521782, 412169726428, 4132070622008664529903, 174224571863520492185852863478334475199686, 133392486801388257127953774730008469744261637221272599199572772174870315402893538
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The non-covering version is A327228.
The specialization to simple graphs is A327227.
The unlabeled version is A327230.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327228.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327105 BII-numbers of set-systems with minimum degree 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49, 50, 56, 57, 58, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 88, 89, 96, 98, 104, 106, 128
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.

Examples

			The sequence of all set-systems with minimum degree 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  18: {{2},{1,3}}
  19: {{1},{2},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
		

Crossrefs

Positions of 1's in A327103.
BII-numbers for minimum degree > 1 are A327107.
Graphs with minimum degree 1 are counted by A245797, with covering case A327227.
Set-systems with minimum degree 1 are counted by A327228, with covering case A327229.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],If[#==0,0,Min@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]]==1&]

A327230 Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 3, 14, 198
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
  {{1}}  {{1,2}}      {{1,2,3}}
         {{1},{2}}    {{1},{2,3}}
         {{2},{1,2}}  {{1},{2},{3}}
                      {{1,3},{2,3}}
                      {{3},{1,2,3}}
                      {{1},{3},{2,3}}
                      {{2,3},{1,2,3}}
                      {{2},{1,3},{2,3}}
                      {{2},{3},{1,2,3}}
                      {{3},{1,3},{2,3}}
                      {{1},{2},{3},{2,3}}
                      {{3},{2,3},{1,2,3}}
                      {{2},{3},{1,3},{2,3}}
                      {{2},{3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covering set-systems are A055621.
The labeled version is A327229.
The non-covering version is A327335 (partial sums).

A327228 Number of set-systems with n vertices and at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 6, 65, 3297, 2537672, 412184904221, 4132070624893905681577, 174224571863520492218909428465944685216436, 133392486801388257127953774730008469745829658368044283629394202488602260177922751
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also set-systems with minimum covered vertex-degree 1.

Examples

			The a(2) = 6 set-systems:
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The covering version is A327229.
The specialization to simple graphs is A245797.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,4}]

Formula

Binomial transform of A327229.
a(n) = A058891(n+1) - A330059(n). - Andrew Howroyd, Jan 21 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Triangle begins:
     1
     1    1
     4    1
    14    4    1
    83   59   23    2
  1232 2551 2792  887  107   10    1
Row n = 3 counts the following antichains:
  {}             {{1,2,3}}      {{1,2},{1,3},{2,3}}
  {{1}}          {{1,2},{1,3}}
  {{2}}          {{1,2},{2,3}}
  {{3}}          {{1,3},{2,3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1},{2}}
  {{1},{3}}
  {{2},{3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327355.
The unlabeled version is A327438.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327104 Maximum vertex-degree of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 3, 4, 3
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.

Examples

			The BII-number of {{2},{3},{1,2},{1,3},{2,3}} is 62, and its degrees are (2,3,3), so a(62) = 3.
		

Crossrefs

Positions of 1's are A326701 (BII-numbers of set-partitions).
The minimum vertex-degree is A327103.
Positions of 2's are A327106.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[If[n==0,0,Max@@Length/@Split[Sort[Join@@bpe/@bpe[n]]]],{n,0,100}]
Showing 1-10 of 17 results. Next