cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2014

Keywords

Crossrefs

Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    m = 16;
    egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
    A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    a[n_] := 2^(n(n-1)/2) - A059167[n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] (* Gus Wiseman, Sep 11 2019 *)

Formula

a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).

Extensions

a(9)-a(16) from Andrew Howroyd, Oct 26 2017

A327227 Number of labeled simple graphs covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.

Examples

			The a(4) = 31 edge-sets:
  {12,34}  {12,13,14}  {12,13,14,23}
  {13,24}  {12,13,24}  {12,13,14,24}
  {14,23}  {12,13,34}  {12,13,14,34}
           {12,14,23}  {12,13,23,24}
           {12,14,34}  {12,13,23,34}
           {12,23,24}  {12,14,23,24}
           {12,23,34}  {12,14,24,34}
           {12,24,34}  {12,23,24,34}
           {13,14,23}  {13,14,23,34}
           {13,14,24}  {13,14,24,34}
           {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
		

Crossrefs

Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A245797, if we assume A245797(0) = 0.

A327103 Minimum vertex-degree in the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.

Examples

			The BII-number of {{2},{3},{1,2},{1,3},{2,3}} is 62, and its degrees are (2,3,3), so a(62) = 2.
		

Crossrefs

The maximum vertex-degree is A327104.
Positions of 1's are A327105.
Positions of terms > 1 are A327107.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[If[n==0,0,Min@@Length/@Split[Sort[Join@@bpe/@bpe[n]]]],{n,0,100}]

A327229 Number of set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 4, 50, 3069, 2521782, 412169726428, 4132070622008664529903, 174224571863520492185852863478334475199686, 133392486801388257127953774730008469744261637221272599199572772174870315402893538
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The non-covering version is A327228.
The specialization to simple graphs is A327227.
The unlabeled version is A327230.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327228.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327230 Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 3, 14, 198
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
  {{1}}  {{1,2}}      {{1,2,3}}
         {{1},{2}}    {{1},{2,3}}
         {{2},{1,2}}  {{1},{2},{3}}
                      {{1,3},{2,3}}
                      {{3},{1,2,3}}
                      {{1},{3},{2,3}}
                      {{2,3},{1,2,3}}
                      {{2},{1,3},{2,3}}
                      {{2},{3},{1,2,3}}
                      {{3},{1,3},{2,3}}
                      {{1},{2},{3},{2,3}}
                      {{3},{2,3},{1,2,3}}
                      {{2},{3},{1,3},{2,3}}
                      {{2},{3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covering set-systems are A055621.
The labeled version is A327229.
The non-covering version is A327335 (partial sums).

A327228 Number of set-systems with n vertices and at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 6, 65, 3297, 2537672, 412184904221, 4132070624893905681577, 174224571863520492218909428465944685216436, 133392486801388257127953774730008469745829658368044283629394202488602260177922751
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also set-systems with minimum covered vertex-degree 1.

Examples

			The a(2) = 6 set-systems:
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The covering version is A327229.
The specialization to simple graphs is A245797.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,4}]

Formula

Binomial transform of A327229.
a(n) = A058891(n+1) - A330059(n). - Andrew Howroyd, Jan 21 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327107 BII-numbers of set-systems with minimum vertex-degree > 1.

Original entry on oeis.org

7, 25, 30, 31, 42, 45, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.

Examples

			The sequence of all set-systems with maximum degree > 1 together with their BII-numbers begins:
   7: {{1},{2},{1,2}}
  25: {{1},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  42: {{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  59: {{1},{2},{3},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  75: {{1},{2},{3},{1,2,3}}
  76: {{1,2},{3},{1,2,3}}
		

Crossrefs

Positions of terms > 1 in A327103.
BII-numbers for minimum degree 1 are A327105.
Graphs with minimum degree > 1 are counted by A059167.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],Min@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]>1&]

A327335 Number of non-isomorphic set-systems with n vertices and at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 4, 18, 216
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum covered vertex-degree 1.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 18 set-systems:
  {{1}}  {{1}}        {{1}}
         {{1,2}}      {{1,2}}
         {{1},{2}}    {{1},{2}}
         {{1},{1,2}}  {{1,2,3}}
                      {{1},{1,2}}
                      {{1},{2,3}}
                      {{1},{1,2,3}}
                      {{1,2},{1,3}}
                      {{1},{2},{3}}
                      {{1,2},{1,2,3}}
                      {{1},{2},{1,3}}
                      {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{2},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1},{2},{3},{1,2}}
                      {{1},{2},{1,2},{1,3}}
                      {{1},{2},{1,2},{1,2,3}}
		

Crossrefs

Unlabeled set-systems are A000612.
The labeled version is A327228.
The covering version is A327230 (first differences).

A324693 Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.

Original entry on oeis.org

0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2019

Keywords

Crossrefs

Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.

Formula

a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021
Showing 1-10 of 11 results. Next