A329005
a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
Original entry on oeis.org
1, 1, 1, 5, 11, 7, 43, 85, 19, 341, 683, 455, 2731, 5461, 3641, 21845, 43691, 9709, 174763, 349525, 233017, 1398101, 2796203, 1864135, 11184811, 22369621, 1657009, 89478485, 178956971, 119304647, 715827883, 1431655765, 954437177, 5726623061, 11453246123
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329006
a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
Original entry on oeis.org
1, 5, 7, 85, 341, 455, 5461, 21845, 9709, 349525, 1398101, 1864135, 22369621, 89478485, 119304647, 1431655765, 5726623061, 2545165805, 91625968981, 366503875925, 488671834567, 5864062014805, 23456248059221, 31274997412295, 375299968947541, 15011998757901653
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329007
a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
Original entry on oeis.org
1, 9, 21, 405, 2511, 5103, 92583, 557685, 372519, 20135709, 120873303, 241805655, 4353033231, 26119793709, 52241181741, 940355620245, 5642176768191, 3761465527701, 203119525916343, 1218718317759525, 2437437797780517, 43873890820402509, 263243376303474663
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A327321
Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
Original entry on oeis.org
1, 1, 3, 7, 18, 27, 5, 21, 27, 27, 61, 300, 630, 540, 405, 91, 549, 1350, 1890, 1215, 729, 547, 3822, 11529, 18900, 19845, 10206, 5103, 205, 1641, 5733, 11529, 14175, 11907, 5103, 2187, 4921, 44280, 177228, 412776, 622566, 612360, 428652, 157464, 59049, 7381
Offset: 1
p(x,3) = (1/k)((4 (7 + 18 x + 27 x^2))/(3 sqrt(3))), where k = 4/(3 sqrt(3)).
First six rows:
1;
1, 3;
7, 18, 27;
5, 21, 27, 27;
61, 300, 630, 540, 405;
91, 549, 1350, 1890, 1215, 729;
The first six polynomials, not factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, 5 + 21 x + 27 x^2 + 27 x^3, 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, 91 + 549 x + 1350 x^2 + 1890 x^3 + 1215 x^4 + 729 x^5.
The first six polynomials, factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, (1 + 3 x) (5 + 6 x + 9 x^2), 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, (1 + 3 x) (13 + 6 x + 9 x^2) (7 + 18 x + 27 x^2).
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Table[f[x, n], {n, 1, 6}]
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A327321 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A327322
Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
Original entry on oeis.org
1, 2, 5, 7, 20, 25, 26, 105, 150, 125, 521, 2600, 5250, 5000, 3125, 434, 2605, 6500, 8750, 6250, 3125, 13021, 91140, 273525, 455000, 459375, 262500, 109375, 8138, 65105, 227850, 455875, 568750, 459375, 218750, 78125, 36169, 325520, 1302100, 3038000, 4558750
Offset: 1
p(x,3) = (1/k)((18 (7 + 20 x + 25 x^2))/(5 sqrt(5))), where k = 18/(5 sqrt(5)).
First six rows:
1;
2, 5;
7, 20, 25;
26, 105, 150, 125;
521, 2600, 5250, 5000, 3125;
434, 2605, 6500, 8750, 6250, 3125;
The first six polynomials, not factored:
1, 2 + 5 x, 7 + 20 x + 25 x^2, 26 + 105 x + 150 x^2 + 125 x^3, 521 + 2600 x + 5250 x^2 + 5000 x^3 + 3125 x^4, 434 + 2605 x + 6500 x^2 + 8750 x^3 + 6250 x^4 + 3125 x^5.
The first six polynomials, factored:
1, 2 + 5 x, 7 + 20 x + 25 x^2, (2 + 5 x) (13 + 20 x + 25 x^2), 521 + 2600 x + 5250 x^2 + 5000 x^3 + 3125 x^4, (2 + 5 x) (7 + 20 x + 25 x^2) (31 + 20 x + 25 x^2).
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Table[f[x, n], {n, 1, 6}]
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A327322 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A327323
Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
Original entry on oeis.org
1, 5, 12, 31, 90, 108, 185, 744, 1080, 864, 1111, 5550, 11160, 10800, 6480, 6665, 39996, 99900, 133920, 97200, 46656, 5713, 39990, 119988, 199800, 200880, 116640, 46656, 239945, 1919568, 6718320, 13438656, 16783200, 13499136, 6531840, 2239488, 1439671
Offset: 1
p(x,3) = (1/k)((7 (31 + 90 x + 108 x^2))/(6 sqrt(6))), where k = 7/(6 sqrt(6)).
First six rows:
1;
5, 12;
31, 90, 108;
185, 744, 1080, 864;
1111, 5550, 11160, 10800, 6480;
6665, 39996, 99900, 133920, 97200, 46656;
5713, 39990, 119988, 199800, 200880, 116640, 46656;
The first six polynomials, not factored:
1, 5 + 12 x, 31 + 90 x + 108 x^2, 185 + 744 x + 1080 x^2 + 864 x^3, 1111 + 5550 x + 11160 x^2 + 10800 x^3 + 6480 x^4, 6665 + 39996 x + 99900 x^2 + 133920 x^3 + 97200 x^4 + 46656 x^5.
The first six polynomials, factored:
1, 5 + 12 x, 31 + 90 x + 108 x^2, (5 + 12 x) (37 + 60 x + 72 x^2), 1111 + 5550 x + 11160 x^2 + 10800 x^3 + 6480 x^4, (5 + 12 x) (43 + 30 x + 36 x^2) (31 + 90 x + 108 x^2).
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Table[f[x, n], {n, 1, 6}]
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A327323 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A328644
Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
Original entry on oeis.org
1, 1, 6, 7, 9, 27, 13, 84, 54, 108, 11, 39, 126, 54, 81, 133, 990, 1755, 3780, 1215, 1458, 463, 2793, 10395, 12285, 19845, 5103, 5103, 1261, 11112, 33516, 83160, 73710, 95256, 20412, 17496, 4039, 34047, 150012, 301644, 561330, 398034, 428652, 78732, 59049
Offset: 1
We have p(x,3) = (1/k)((5 (7 + 9 x + 27 x^2))/(6 sqrt(6))), where k = 5/(6 sqrt(6)).
First six rows:
1;
1, 6;
7, 9, 27;
13, 84, 54, 108;
11, 39, 126, 54, 81;
133, 990, 1755, 3780, 1215, 1458;
The first six polynomials, not factored:
1, 1 + 6 x, 7 + 9 x + 27 x^2, 13 + 84 x + 54 x^2 + 108 x^3, 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, 133 + 990 x + 1755 x^2 + 3780 x^3 + 1215 x^4 + 1458 x^5.
The first six polynomials, factored:
1, 1 + 6 x, 7 + 9 x + 27 x^2, (1 + 6 x) (13 + 6 x + 18 x^2), 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, (1 + 6 x) (19 + 3 x + 9 x^2) (7 + 9 x + 27 x^2).
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Table[f[x, n], {n, 1, 6}]
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A328644 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329011
a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.
Original entry on oeis.org
1, 2, 7, 26, 521, 434, 13021, 8138, 36169, 813802, 8138021, 3390842, 203450521, 508626302, 1695421007, 1589457194, 127156575521, 35321270978, 3178914388021, 3973642985026, 26490953233507, 198682149251302, 1986821492513021, 413921144273546, 49670537312825521
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327322 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329011 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329012 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329013 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329012
a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.
Original entry on oeis.org
1, 7, 52, 406, 16496, 27664, 1663936, 2081968, 18513664, 833245952, 16665967616, 13888655872, 1666655481856, 8333310963712, 55555495903232, 104166621927424, 16666663803355136, 9259258622967808, 1666666620853682176, 4166666620853682176, 55555555311219638272
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327322 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329011 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329012 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329013 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329013
a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.
Original entry on oeis.org
1, 12, 147, 1836, 116721, 301644, 27679401, 52496748, 704739609, 47763633852, 1436395799961, 1798109838252, 323942200421841, 2430837436077972, 24315999958264707, 68401618078375404, 16418241358998948801, 13682794309260216588, 3694504558135555477881
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327322 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329011 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329012 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329013 *)
(* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-10 of 10 results.
Comments