cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A329005 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.

Original entry on oeis.org

1, 1, 1, 5, 11, 7, 43, 85, 19, 341, 683, 455, 2731, 5461, 3641, 21845, 43691, 9709, 174763, 349525, 233017, 1398101, 2796203, 1864135, 11184811, 22369621, 1657009, 89478485, 178956971, 119304647, 715827883, 1431655765, 954437177, 5726623061, 11453246123
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327320.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327320 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329005 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329006 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329007 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329006 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.

Original entry on oeis.org

1, 5, 7, 85, 341, 455, 5461, 21845, 9709, 349525, 1398101, 1864135, 22369621, 89478485, 119304647, 1431655765, 5726623061, 2545165805, 91625968981, 366503875925, 488671834567, 5864062014805, 23456248059221, 31274997412295, 375299968947541, 15011998757901653
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327320.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327320 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329005 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329006 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329007 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329007 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.

Original entry on oeis.org

1, 9, 21, 405, 2511, 5103, 92583, 557685, 372519, 20135709, 120873303, 241805655, 4353033231, 26119793709, 52241181741, 940355620245, 5642176768191, 3761465527701, 203119525916343, 1218718317759525, 2437437797780517, 43873890820402509, 263243376303474663
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327320.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327320 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329005 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329006 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329007 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A327321 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.

Original entry on oeis.org

1, 1, 3, 7, 18, 27, 5, 21, 27, 27, 61, 300, 630, 540, 405, 91, 549, 1350, 1890, 1215, 729, 547, 3822, 11529, 18900, 19845, 10206, 5103, 205, 1641, 5733, 11529, 14175, 11907, 5103, 2187, 4921, 44280, 177228, 412776, 622566, 612360, 428652, 157464, 59049, 7381
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having gcd = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(3). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			p(x,3) = (1/k)((4 (7 + 18 x + 27 x^2))/(3 sqrt(3))), where k = 4/(3 sqrt(3)).
First six rows:
   1;
   1,   3;
   7,  18,   27;
   5,  21,   27,   27;
  61, 300,  630,  540,  405;
  91, 549, 1350, 1890, 1215, 729;
The first six polynomials, not factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, 5 + 21 x + 27 x^2 + 27 x^3, 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, 91 + 549 x + 1350 x^2 + 1890 x^3 + 1215 x^4 + 729 x^5.
The first six polynomials, factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, (1 + 3 x) (5 + 6 x + 9 x^2), 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, (1 + 3 x) (13 + 6 x + 9 x^2) (7 + 18 x + 27 x^2).
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
    MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
    Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Table[f[x, n], {n, 1, 6}]
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A327321 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A327322 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.

Original entry on oeis.org

1, 2, 5, 7, 20, 25, 26, 105, 150, 125, 521, 2600, 5250, 5000, 3125, 434, 2605, 6500, 8750, 6250, 3125, 13021, 91140, 273525, 455000, 459375, 262500, 109375, 8138, 65105, 227850, 455875, 568750, 459375, 218750, 78125, 36169, 325520, 1302100, 3038000, 4558750
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having gcd = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(5). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			p(x,3) = (1/k)((18 (7 + 20 x + 25 x^2))/(5 sqrt(5))), where k = 18/(5 sqrt(5)).
First six rows:
    1;
    2,    5;
    7,   20,   25;
   26,  105,  150,  125;
  521, 2600, 5250, 5000, 3125;
  434, 2605, 6500, 8750, 6250, 3125;
The first six polynomials, not factored:
1, 2 + 5 x, 7 + 20 x + 25 x^2, 26 + 105 x + 150 x^2 + 125 x^3, 521 + 2600 x + 5250 x^2 + 5000 x^3 + 3125 x^4, 434 + 2605 x + 6500 x^2 + 8750 x^3 + 6250 x^4 + 3125 x^5.
The first six polynomials, factored:
1, 2 + 5 x, 7 + 20 x + 25 x^2, (2 + 5 x) (13 + 20 x + 25 x^2), 521 + 2600 x + 5250 x^2 + 5000 x^3 + 3125 x^4, (2 + 5 x) (7 + 20 x + 25 x^2) (31 + 20 x + 25 x^2).
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
    MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
    Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Table[f[x, n], {n, 1, 6}]
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A327322 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A327323 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.

Original entry on oeis.org

1, 5, 12, 31, 90, 108, 185, 744, 1080, 864, 1111, 5550, 11160, 10800, 6480, 6665, 39996, 99900, 133920, 97200, 46656, 5713, 39990, 119988, 199800, 200880, 116640, 46656, 239945, 1919568, 6718320, 13438656, 16783200, 13499136, 6531840, 2239488, 1439671
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2019

Keywords

Comments

Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having GCD = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(6). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			p(x,3) = (1/k)((7 (31 + 90 x + 108 x^2))/(6 sqrt(6))), where k = 7/(6 sqrt(6)).
First six rows:
     1;
     5,    12;
    31,    90,    108;
   185,   744,   1080,    864;
  1111,  5550,  11160,  10800,   6480;
  6665, 39996,  99900, 133920,  97200,  46656;
  5713, 39990, 119988, 199800, 200880, 116640, 46656;
The first six polynomials, not factored:
1, 5 + 12 x, 31 + 90 x + 108 x^2, 185 + 744 x + 1080 x^2 + 864 x^3, 1111 + 5550 x + 11160 x^2 + 10800 x^3 + 6480 x^4, 6665 + 39996 x + 99900 x^2 + 133920 x^3 + 97200 x^4 + 46656 x^5.
The first six polynomials, factored:
1, 5 + 12 x, 31 + 90 x + 108 x^2, (5 + 12 x) (37 + 60 x + 72 x^2), 1111 + 5550 x +  11160 x^2 + 10800 x^3 + 6480 x^4, (5 + 12 x) (43 + 30 x + 36 x^2) (31 + 90 x + 108 x^2).
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
    MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
    Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Table[f[x, n], {n, 1, 6}]
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A327323 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A328644 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.

Original entry on oeis.org

1, 1, 6, 7, 9, 27, 13, 84, 54, 108, 11, 39, 126, 54, 81, 133, 990, 1755, 3780, 1215, 1458, 463, 2793, 10395, 12285, 19845, 5103, 5103, 1261, 11112, 33516, 83160, 73710, 95256, 20412, 17496, 4039, 34047, 150012, 301644, 561330, 398034, 428652, 78732, 59049
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2019

Keywords

Comments

Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having GCD = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(3/2). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			We have p(x,3) = (1/k)((5 (7 + 9 x + 27 x^2))/(6 sqrt(6))), where k = 5/(6 sqrt(6)).
First six rows:
  1;
  1, 6;
  7, 9, 27;
  13, 84, 54, 108;
  11, 39, 126, 54, 81;
  133, 990, 1755, 3780, 1215, 1458;
The first six polynomials, not factored:
1, 1 + 6 x, 7 + 9 x + 27 x^2, 13 + 84 x + 54 x^2 + 108 x^3, 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, 133 + 990 x + 1755 x^2 + 3780 x^3 + 1215 x^4 + 1458 x^5.
The first six polynomials, factored:
1, 1 + 6 x, 7 + 9 x + 27 x^2, (1 + 6 x) (13 + 6 x + 18 x^2), 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, (1 + 6 x) (19 + 3 x + 9 x^2) (7 + 9 x + 27 x^2).
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
    MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
    Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Table[f[x, n], {n, 1, 6}]
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A328644 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329011 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

Original entry on oeis.org

1, 2, 7, 26, 521, 434, 13021, 8138, 36169, 813802, 8138021, 3390842, 203450521, 508626302, 1695421007, 1589457194, 127156575521, 35321270978, 3178914388021, 3973642985026, 26490953233507, 198682149251302, 1986821492513021, 413921144273546, 49670537312825521
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327322.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329012 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

Original entry on oeis.org

1, 7, 52, 406, 16496, 27664, 1663936, 2081968, 18513664, 833245952, 16665967616, 13888655872, 1666655481856, 8333310963712, 55555495903232, 104166621927424, 16666663803355136, 9259258622967808, 1666666620853682176, 4166666620853682176, 55555555311219638272
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). Conjecture: there is no upper bound for the number of consecutive equal digits among numbers in this sequence, as suggested, for example, by 34 straight 1's in a(96) and 38 straight 6's in a(97).

Examples

			See Example in A327322.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329013 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

Original entry on oeis.org

1, 12, 147, 1836, 116721, 301644, 27679401, 52496748, 704739609, 47763633852, 1436395799961, 1798109838252, 323942200421841, 2430837436077972, 24315999958264707, 68401618078375404, 16418241358998948801, 13682794309260216588, 3694504558135555477881
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327322.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-10 of 10 results.