cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331418 If A331417(n) is the maximum sum of primes of the parts of an integer partition of n, then a(n) = A331417(n) - n + 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 12, 15, 20, 21, 26, 29, 30, 33, 38, 43, 44, 49, 52, 53, 58, 61, 66, 73, 76, 77, 80, 81, 84, 97, 100, 105, 106, 115, 116, 121, 126, 129, 134, 139, 140, 149, 150, 153, 154, 165, 176, 179, 180, 183, 188, 189, 198, 203, 208, 213, 214, 219
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2020

Keywords

Comments

For n > 4, a(n) = A014692(n).

Crossrefs

Converges to A014692.
Row lengths of A331385.
Sum of prime factors is A001414.
Partitions into primes are A000607.
Partitions whose sum of primes is divisible by their sum are A331379.

Programs

  • Mathematica
    Table[Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}]-n+1,{n,0,30}]

Formula

a(n) = A331417(n) - n + 1.

A000607 Number of partitions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of values of k such that A001414(k) = n. - Howard A. Landman, Sep 25 2001
Let W(n) = {prime p: There is at least one number m whose spf is p, and sopfr(m) = n}. Let V(n,p) = {m: sopfr(m) = n, p belongs to W(n)}. Then a(n) = sigma(|V(n,p)|). E.g.: W(10) = {2,3,5}, V(10,2) = {30,32,36}, V(10,3) = {21}, V(10,5) = {25}, so a(10) = 3+1+1 = 5. - David James Sycamore, Apr 14 2018
From Gus Wiseman, Jan 18 2020: (Start)
Also the number of integer partitions such that the sum of primes indexed by the parts is n. For example, the sum of primes indexed by the parts of the partition (3,2,1,1) is prime(3)+prime(2)+prime(1)+prime(1) = 12, so (3,2,1,1) is counted under a(12). The a(2) = 1 through a(14) = 10 partitions are:
1 2 11 3 22 4 32 41 33 5 43 6 44
21 111 31 221 222 42 322 331 51 52
211 1111 311 321 411 421 332 431
2111 2211 2221 2222 422 3222
11111 3111 3211 3221 3311
21111 22111 4111 4211
111111 22211 22221
31111 32111
211111 221111
1111111
(End)

Examples

			n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5.
n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
  • D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

G.f. = 1 / g.f. for A046675. See A046113 for the ordered (compositions) version.
Row sums of array A116865 and of triangle A261013.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.

Programs

  • Haskell
    a000607 = p a000040_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Magma
    [1] cat [#RestrictedPartitions(n,{p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
  • Maple
    with(gfun):
    t1:=mul(1/(1-q^ithprime(n)),n=1..51):
    t2:=series(t1,q,50):
    t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
  • Mathematica
    CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x]
    f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *)
    Table[Length[Select[IntegerPartitions[n],And@@PrimeQ/@#&]],{n,0,60}] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}];, {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
  • PARI
    N=66;x='x+O('x^N); Vec(1/prod(k=1,N,1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
    
  • Python
    from sympy import primefactors
    l = [1, 0]
    for n in range(2, 101):
        l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) // n)
    l  # Indranil Ghosh, Jul 13 2017
    
  • Sage
    [Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)]  # Giuseppe Coppoletta, Jul 11 2016
    

Formula

Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
See the partition arrays A116864 and A116865.
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
a(n) = A184198(n) + A184199(n). - Vaclav Kotesovec, Jan 11 2021

A330953 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by their sum of primes of parts.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 3, 4, 6, 3, 12, 10, 12, 14, 27, 38, 44, 52, 48, 77, 101, 106, 127, 206, 268, 377, 392, 496, 602, 671, 821, 1090, 1318, 1568, 1926, 2260, 2703, 3258, 3942, 4858, 5923, 6891, 8286, 9728, 11676, 13775, 16314, 19749, 23474, 27793, 32989, 38775
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(11) = 12 partitions: (A = 10, B = 11):
  1  2   3  4     5  6    7      8         9        A         B
     11     1111     222  3211   431       432      5311      542
                     321  22111  4211      3321     22111111  5411
                                 11111111  32211              33221
                                           321111             42221
                                           2211111            53111
                                                              322211
                                                              431111
                                                              521111
                                                              2222111
                                                              3311111
                                                              32111111
For example, the partition (3,3,2,2,1) is counted under a(11) because 5*5*3*3*2 = 450 is divisible by 5+5+3+3+2 = 18.
		

Crossrefs

The Heinz numbers of these partitions are given by A036844.
Numbers divisible by the sum of their prime indices are A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product is divisible by their sum of primes are A330954.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,Plus@@Prime/@#]&]],{n,30}]

A331416 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = k.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 3, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 3, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 4, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2020

Keywords

Examples

			Triangle begins:
  1
  0 0 1
  0 0 0 1 1
  0 0 0 0 0 2 1
  0 0 0 0 0 0 1 3 1
  0 0 0 0 0 0 0 0 2 3 1 1
  0 0 0 0 0 0 0 0 0 1 4 3 1 2
  0 0 0 0 0 0 0 0 0 0 0 2 5 3 2 2 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 3 4 2 0 2
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 6 4 6 2 1 2 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2
Row n = 8 counts the following partitions (empty column not shown):
  (2222)  (332)    (44)      (41111)    (53)        (611)   (8)
          (422)    (431)     (311111)   (62)        (5111)  (71)
          (3221)   (3311)    (2111111)  (521)
          (22211)  (4211)               (11111111)
                   (32111)
                   (221111)
Column k = 19 counts the following partitions:
  (8)   (6111)   (532)        (443)       (33222)
  (71)  (51111)  (622)        (4331)      (42222)
                 (5221)       (4421)      (322221)
                 (4111111)    (33311)     (2222211)
                 (31111111)   (43211)
                 (211111111)  (332111)
                              (422111)
                              (3221111)
                              (22211111)
		

Crossrefs

Row lengths are A331417.
Row sums are A000041.
Column sums are A000607.
Shifting row n to the left n times gives A331385.
Partitions whose Heinz number is divisible by their sum of primes: A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.
Partitions whose product divides their sum of primes are A331381.
Partitions whose product equals their sum of primes are A331383.

Programs

  • Mathematica
    maxm[n_]:=Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}];
    Table[Length[Select[IntegerPartitions[n],Total[Prime/@#]==k&]],{n,0,10},{k,0,maxm[n]}]

A366851 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n such that the sum of primes indexed by all parts greater than one is k.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Comments

To illustrate the definition, the sum of primes indexed by all parts greater than one of the partition (5,2,2,1) is prime(5) + prime(2) + prime(2) = 17.

Examples

			Triangle begins:
  1
  1
  1 0 0 1
  1 0 0 1 0 1
  1 0 0 1 0 1 1 1
  1 0 0 1 0 1 1 1 1 0 0 1
  1 0 0 1 0 1 1 1 1 1 2 1 0 1
  1 0 0 1 0 1 1 1 1 1 2 2 1 1 1 0 0 1
  1 0 0 1 0 1 1 1 1 1 2 2 2 3 2 0 2 1 0 1
  1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 2 2 2 2 1 1 0 0 1
  1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 3 4 4 2 3 2 0 3 1 0 0 0 0 0 1
  1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 3 4 5 4 4 3 3 3 2 3 0 1 0 0 1 0 1
The T(8,13) = 3 partitions are: (6,1,1), (4,2,2), (3,3,2).
The T(10,17) = 4 partitions are: (7,1,1,1), (5,2,2,1), (4,4,2), (4,3,3).
		

Crossrefs

Row lengths are A055670.
Columns appear to converge to A099773.
A bisected even version is A116598 (counts partitions by number of 1's).
Counting all parts (not just > 1) gives A331416, shifted A331385.
A000041 counts integer partitions, strict A000009 (also into odds).
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A330953 counts partitions with Heinz number divisible by sum of primes.
A331381 counts partitions with (product)|(sum of primes), equality A331383.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Total[Select[Prime/@#,OddQ]]==k&]], {n,0,10}, {k,0,If[n<=1,0,Prime[n]]}]
Showing 1-5 of 5 results.