cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A332282 Numbers whose unsorted prime signature is not unimodal.

Original entry on oeis.org

300, 588, 600, 980, 1176, 1200, 1452, 1500, 1960, 2028, 2100, 2205, 2352, 2400, 2420, 2904, 2940, 3000, 3300, 3380, 3388, 3468, 3900, 3920, 4056, 4116, 4200, 4332, 4410, 4704, 4732, 4800, 4840, 5100, 5445, 5700, 5780, 5808, 5880, 6000, 6348, 6468, 6600, 6615
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

The unsorted prime signature of a positive integer (row n of A124010) is the sequence of exponents it is prime factorization.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also Heinz numbers of integer partitions with non-unimodal run-lengths. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   300: {1,1,2,3,3}
   588: {1,1,2,4,4}
   600: {1,1,1,2,3,3}
   980: {1,1,3,4,4}
  1176: {1,1,1,2,4,4}
  1200: {1,1,1,1,2,3,3}
  1452: {1,1,2,5,5}
  1500: {1,1,2,3,3,3}
  1960: {1,1,1,3,4,4}
  2028: {1,1,2,6,6}
  2100: {1,1,2,3,3,4}
  2205: {2,2,3,4,4}
  2352: {1,1,1,1,2,4,4}
  2400: {1,1,1,1,1,2,3,3}
  2420: {1,1,3,5,5}
  2904: {1,1,1,2,5,5}
  2940: {1,1,2,3,4,4}
  3000: {1,1,1,2,3,3,3}
  3300: {1,1,2,3,3,5}
  3380: {1,1,3,6,6}
		

Crossrefs

The opposite version is A332642.
These are the Heinz numbers of the partitions counted by A332281.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]==1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Last/@FactorInteger[#]]&]

A332834 Number of compositions of n that are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 36, 88, 199, 432, 914, 1900, 3896, 7926, 16036, 32311, 64944, 130308, 261166, 523040, 1046996, 2095152, 4191796, 8385466, 16773303, 33549564, 67102848, 134210298, 268426328, 536859712, 1073728142, 2147466956, 4294947014, 8589909976
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 14 compositions:
  (121)  (131)   (132)
         (212)   (141)
         (1121)  (213)
         (1211)  (231)
                 (312)
                 (1131)
                 (1212)
                 (1221)
                 (1311)
                 (2112)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The version for unsorted prime signature is A332831.
The version for run-lengths of compositions is A332833.
The complement appears to be counted by A329398.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@#,GreaterEqual@@#]&]],{n,0,10}]
  • PARI
    a(n)={if(n==0, 0, 2^(n-1) - 2*numbpart(n) + numdiv(n))} \\ Andrew Howroyd, Dec 30 2020

Formula

a(n) = 2^(n - 1) - 2 * A000041(n) + A000005(n).

A332642 Numbers whose negated unsorted prime signature is not unimodal.

Original entry on oeis.org

90, 126, 198, 234, 270, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 594, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1188, 1206, 1242, 1274, 1275, 1278, 1314, 1350, 1386
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
    90: {1,2,2,3}
   126: {1,2,2,4}
   198: {1,2,2,5}
   234: {1,2,2,6}
   270: {1,2,2,2,3}
   306: {1,2,2,7}
   342: {1,2,2,8}
   350: {1,3,3,4}
   378: {1,2,2,2,4}
   414: {1,2,2,9}
   522: {1,2,2,10}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
   550: {1,3,3,5}
   558: {1,2,2,11}
   594: {1,2,2,2,5}
   630: {1,2,2,3,4}
   650: {1,3,3,6}
   666: {1,2,2,12}
   702: {1,2,2,2,6}
For example, 630 has negated unsorted prime signature (-1,-2,-1,-1), which is not unimodal, so 630 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A332639.
The case that is not unimodal either is A332643.
The version for compositions is A332669.
The complement is A332282.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unsorted prime signature is A124010.
Non-unimodal normal sequences are A328509.
The number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n is A332742(n).
Partitions whose negated 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Select[Range[2000],!unimodQ[-Last/@FactorInteger[#]]&]

A332870 Number of compositions of n that are neither unimodal nor is their negation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 9, 32, 92, 243, 587, 1361, 3027, 6564, 13928, 29127, 60180, 123300, 250945, 508326, 1025977, 2065437, 4150056, 8327344, 16692844, 33438984, 66951671, 134004892, 268148573, 536486146, 1073227893, 2146800237, 4294061970, 8588740071, 17178298617
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 2 and a(7) = 9 compositions:
  (1212)  (1213)
  (2121)  (1312)
          (2131)
          (3121)
          (11212)
          (12112)
          (12121)
          (21121)
          (21211)
		

Crossrefs

The case of run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions that are neither weakly increasing nor decreasing are A332834.
Compositions with weakly increasing or decreasing run-lengths are A332835.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A001523(n) - A332578(n) + 2*A000041(n) - A000005(n) for n > 0. - Andrew Howroyd, Dec 30 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332640 Number of integer partitions of n such that neither the run-lengths nor the negated run-lengths are unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 12, 17, 29, 44, 66, 92, 138, 187, 266, 359, 492, 649, 877, 1140, 1503, 1938, 2517, 3202, 4111, 5175, 6563, 8209, 10297, 12763, 15898, 19568, 24152, 29575, 36249, 44090, 53737, 65022, 78752, 94873, 114294
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(14) = 1 through a(18) = 12 partitions:
  (433211)  (533211)   (443221)    (544211)     (544311)
            (4332111)  (633211)    (733211)     (553221)
                       (5332111)   (4333211)    (644211)
                       (43321111)  (6332111)    (833211)
                                   (53321111)   (4432221)
                                   (433211111)  (5333211)
                                                (5442111)
                                                (7332111)
                                                (43332111)
                                                (63321111)
                                                (533211111)
                                                (4332111111)
For example, the partition (4,3,3,2,1,1) has run-lengths (1,2,1,2), so is counted under a(14).
		

Crossrefs

Looking only at the original run-lengths gives A332281.
Looking only at the negated run-lengths gives A332639.
The Heinz numbers of these partitions are A332643.
The complement is counted by A332746.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Run-lengths and negated run-lengths are not both unimodal: A332641.
Compositions whose negation is not unimodal are A332669.
Run-lengths and negated run-lengths are both unimodal: A332745.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&&!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332831 Numbers whose unsorted prime signature is neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

90, 126, 198, 234, 270, 300, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 588, 594, 600, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 980, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1176, 1188, 1200, 1206, 1242
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   90: {1,2,2,3}
  126: {1,2,2,4}
  198: {1,2,2,5}
  234: {1,2,2,6}
  270: {1,2,2,2,3}
  300: {1,1,2,3,3}
  306: {1,2,2,7}
  342: {1,2,2,8}
  350: {1,3,3,4}
  378: {1,2,2,2,4}
  414: {1,2,2,9}
  522: {1,2,2,10}
  525: {2,3,3,4}
  540: {1,1,2,2,2,3}
  550: {1,3,3,5}
  558: {1,2,2,11}
  588: {1,1,2,4,4}
  594: {1,2,2,2,5}
  600: {1,1,1,2,3,3}
  630: {1,2,2,3,4}
For example, the prime signature of 540 is (2,3,1), so 540 is in the sequence.
		

Crossrefs

The version for run-lengths of partitions is A332641.
The version for run-lengths of compositions is A332833.
The version for compositions is A332834.
Prime signature is A124010.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.

Programs

  • Mathematica
    Select[Range[1000],!Or[LessEqual@@Last/@FactorInteger[#],GreaterEqual@@Last/@FactorInteger[#]]&]

Formula

Intersection of A071365 and A112769.

A332746 Number of integer partitions of n such that either the run-lengths or the negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 134, 174, 227, 291, 373, 473, 598, 748, 936, 1163, 1437, 1771, 2170, 2651, 3226, 3916, 4727, 5702, 6846, 8205, 9793, 11681, 13866, 16462, 19452, 22976, 27041, 31820, 37276, 43693, 51023, 59559, 69309, 80664
Offset: 0

Views

Author

Gus Wiseman, Feb 27 2020

Keywords

Comments

First differs from A000041 at a(14) = 134, A000041(14) = 135.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The only partition not counted under a(14) = 134 is (4,3,3,2,1,1), whose run-lengths (1,2,1,2) are neither unimodal nor is their negation.
		

Crossrefs

Looking only at the original run-lengths gives A332281.
Looking only at the negated run-lengths gives A332639.
The complement is counted by A332640.
The Heinz numbers of partitions not in this class are A332643.
Unimodal compositions are A001523.
Partitions with unimodal run-lengths are A332280.
Compositions whose negation is unimodal are A332578.
Partitions whose negated run-lengths are unimodal are A332638.
Run-lengths are neither weakly increasing nor weakly decreasing: A332641.
Run-lengths and negated run-lengths are both unimodal: A332745.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]||unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332874 Number of strict compositions of n that are neither unimodal nor is their negation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 20, 30, 50, 150, 180, 290, 420, 630, 860, 1828, 2168, 3326, 4514, 6530, 8576, 12188, 20096, 25314, 35576, 48062, 65592, 86752, 117222, 152060, 237590, 292346, 402798, 524596, 711270, 910606, 1221204, 1554382, 2044460, 2927124
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n. It is strict if there are not repeated parts.

Examples

			The a(10) = 10 through a(12) = 20 compositions:
  (1,3,2,4)  (1,3,2,5)  (1,3,2,6)
  (1,4,2,3)  (1,5,2,3)  (1,4,2,5)
  (2,1,4,3)  (2,1,5,3)  (1,5,2,4)
  (2,3,1,4)  (2,3,1,5)  (1,6,2,3)
  (2,4,1,3)  (2,5,1,3)  (2,1,5,4)
  (3,1,4,2)  (3,1,5,2)  (2,1,6,3)
  (3,2,4,1)  (3,2,5,1)  (2,3,1,6)
  (3,4,1,2)  (3,5,1,2)  (2,4,1,5)
  (4,1,3,2)  (5,1,3,2)  (2,5,1,4)
  (4,2,3,1)  (5,2,3,1)  (2,6,1,3)
                        (3,1,6,2)
                        (3,2,6,1)
                        (3,6,1,2)
                        (4,1,5,2)
                        (4,2,5,1)
                        (4,5,1,2)
                        (5,1,4,2)
                        (5,2,4,1)
                        (6,1,3,2)
                        (6,2,3,1)
		

Crossrefs

The non-strict version for unsorted prime signature is A332643.
The non-strict version is A332870.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Compositions with neither weakly increasing nor weakly decreasing run-lengths are A332833.
Compositions with weakly increasing or weakly decreasing run-lengths are A332835.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&&!unimodQ[-#]&]],{n,0,20}]
  • PARI
    seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=4, n, (k! - 2^k + 2)*polcoef(p,k,y)), -(n+1))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=4} (k! - 2^k + 2) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Apr 16 2021

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A335374 Numbers k such that the k-th composition in standard order (A066099) is not co-unimodal.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is co-unimodal if it is the concatenation of a weakly decreasing and a weakly increasing sequence, implying that its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  81: (2,4,1)
  82: (2,3,2)
  83: (2,3,1,1)
  89: (2,1,3,1)
		

Crossrefs

This is the dual version of A335373.
The case that is not unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[-stc[#]]&]
Showing 1-10 of 11 results. Next