cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A115981 The number of compositions of n which cannot be viewed as stacks.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 5, 17, 49, 126, 303, 694, 1536, 3312, 7009, 14619, 30164, 61732, 125568, 254246, 513048, 1032696, 2074875, 4163256, 8345605, 16717996, 33473334, 66998380, 134067959, 268233386, 536599508, 1073378850, 2147000209
Offset: 0

Views

Author

Alford Arnold, Feb 12 2006

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. A composition of n is a finite sequence of positive integers summing to n. - Gus Wiseman, Mar 05 2020

Examples

			a(5) = 1 counting {212}.
a(6) = 5 counting {1212, 2112,2121,213,312}.
a(7) = 17 counting {11212, 12112,12121, 21211, 21121, 21112, 2122, 2212, 2113, 3112, 2131, 3121, 1213, 1312, 412, 214, 313}.
a(8) = 49 = 128 - 79.
a(9) = 126 = 256 - 130.
		

Crossrefs

The complement is counted by A001523.
The strict case is A072707.
The case covering an initial interval is A332743.
The version whose negation is not unimodal either is A332870.
Non-unimodal permutations are A059204.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are not unimodal are A332284.
Non-unimodal permutations of the prime indices of n are A332671.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) = A011782(n) - A001523(n).

Extensions

More terms from Brian Kuehn (brk158(AT)psu.edu), Apr 20 2006
a(25) corrected by Georg Fischer, Jun 29 2021

A328509 Number of non-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 3, 41, 425, 4287, 45941, 541219, 7071501, 102193755, 1622448861, 28090940363, 526856206877, 10641335658891, 230283166014653, 5315654596751659, 130370766738143517, 3385534662263335179, 92801587315936355325, 2677687796232803000171, 81124824998464533181661
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(3) = 3 sequences are (2,1,2), (2,1,3), (3,1,2).
The a(4) = 41 sequences:
  (1212)  (2113)  (2134)  (2413)  (3142)  (3412)
  (1213)  (2121)  (2143)  (3112)  (3212)  (4123)
  (1312)  (2122)  (2212)  (3121)  (3213)  (4132)
  (1323)  (2123)  (2213)  (3122)  (3214)  (4213)
  (1324)  (2131)  (2312)  (3123)  (3231)  (4231)
  (1423)  (2132)  (2313)  (3124)  (3241)  (4312)
  (2112)  (2133)  (2314)  (3132)  (3312)
		

Crossrefs

Not requiring non-unimodality gives A000670.
The complement is counted by A007052.
The case where the negation is not unimodal either is A332873.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Covering partitions with unimodal run-lengths are A332577.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 3*x + x^2)/(1 - 4*x + 2*x^2), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) from Robert Price, Jun 19 2021
a(10) onwards from Andrew Howroyd, Jan 28 2024

A335373 Numbers k such that the k-th composition in standard order (A066099) is not unimodal.

Original entry on oeis.org

22, 38, 44, 45, 46, 54, 70, 76, 77, 78, 86, 88, 89, 90, 91, 92, 93, 94, 102, 108, 109, 110, 118, 134, 140, 141, 142, 148, 150, 152, 153, 154, 155, 156, 157, 158, 166, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 198
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  22: (2,1,2)
  38: (3,1,2)
  44: (2,1,3)
  45: (2,1,2,1)
  46: (2,1,1,2)
  54: (1,2,1,2)
  70: (4,1,2)
  76: (3,1,3)
  77: (3,1,2,1)
  78: (3,1,1,2)
  86: (2,2,1,2)
  88: (2,1,4)
  89: (2,1,3,1)
  90: (2,1,2,2)
  91: (2,1,2,1,1)
  92: (2,1,1,3)
  93: (2,1,1,2,1)
  94: (2,1,1,1,2)
		

Crossrefs

The dual version (non-co-unimodal compositions) is A335374.
The case that is not co-unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with non-unimodal 0-appended first differences are A332284.
Non-unimodal permutations of the multiset of prime indices of n are A332671.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,200],!unimodQ[stc[#]]&]

A332288 Number of unimodal permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2).

Examples

			The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180:
  (1)  (12)  (112)  (1112)  (11112)  (1123)  (11123)  (11223)
       (21)  (121)  (1121)  (11121)  (1132)  (11132)  (11232)
             (211)  (1211)  (11211)  (1231)  (11231)  (11322)
                    (2111)  (12111)  (1321)  (11321)  (12231)
                            (21111)  (2311)  (12311)  (12321)
                                     (3211)  (13211)  (13221)
                                             (23111)  (22311)
                                             (32111)  (23211)
                                                      (32211)
		

Crossrefs

Dominated by A008480.
A more interesting version is A332294.
The complement is counted by A332671.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with unimodal 0-appended first differences are A332283.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}]

A332294 Number of unimodal permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 4, 1, 6, 1, 5, 4, 8, 1, 9, 1, 8, 5, 6, 1, 12, 4, 7, 9, 10, 1, 12, 1, 16, 6, 8, 5, 18, 1, 9, 7, 16, 1, 15, 1, 12, 12, 10, 1, 24, 5, 16, 8, 14, 1, 27, 6, 20, 9, 11, 1, 24, 1, 12, 15, 32, 7, 18, 1, 16, 10, 20, 1, 36, 1, 13, 16, 18, 6
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(12) = 6 permutations:
  {1,1,2,3}
  {1,1,3,2}
  {1,2,3,1}
  {1,3,2,1}
  {2,3,1,1}
  {3,2,1,1}
		

Crossrefs

Dominated by A318762.
A less interesting version is A332288.
The complement is counted by A332672.
The opposite/negative version is A332741.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Partitions whose run-lengths are unimodal are A332280.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[nrmptn[n]],unimodQ]],{n,0,30}]

Formula

a(n) + A332672(n) = A318762(n).
a(n) = A332288(A181821(n)).

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332742 Number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 3, 2, 0, 8, 0, 3, 7, 16, 0, 24, 0, 16, 12, 4, 0, 52, 16, 5, 81, 26, 0, 54, 0, 104, 18, 6, 31, 168, 0, 7, 25, 112, 0, 99, 0, 38, 201, 8, 0, 344, 65, 132, 33, 52, 0, 612, 52, 202, 42, 9, 0, 408, 0, 10, 411, 688, 80, 162, 0, 68, 52, 272
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 6, 8, 9, 10, 12, 14, 15, 16:
  121  132  1212  1121  1132  11121  11212  1243
       231  1221  1211  1213  11211  11221  1324
            2121        1231  12111  12112  1342
                        1312         12121  1423
                        1321         12211  1432
                        2131         21121  2143
                        2311         21211  2314
                        3121                2341
                                            2413
                                            2431
                                            3142
                                            3241
                                            3412
                                            3421
                                            4132
                                            4231
		

Crossrefs

Dominated by A318762.
The complement of the non-negated version is counted by A332294.
The non-negated version is A332672.
The complement is counted by A332741.
A less interesting version is A333146.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal 0-appended first differences are A332284.
Compositions whose negation is unimodal are A332578.
Partitions with non-unimodal negated run-lengths are A332639.
Numbers whose negated prime signature is not unimodal are A332642.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!unimodQ[#]&]],{n,30}]

Formula

a(n) + A332741(n) = A318762(n).

A332671 Number of non-unimodal permutations of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 18, 30, 36, 42, 50, 54, 60, 66, 70, 72:
  212  213  1212  214  313  2122  1213  215  314  11212
       312  2112  412       2212  1312  512  413  12112
            2121                  2113            12121
                                  2131            21112
                                  3112            21121
                                  3121            21211
		

Crossrefs

Dominated by A008480.
The complement is counted by A332288.
A more interesting version is A332672.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],!unimodQ[#]&]],{n,100}]

Formula

a(n) + A332288(n) = A008480(n).
a(A181821(n)) = A332672(n).

A332741 Number of unimodal negated permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1, 8, 4, 2, 9, 4, 1, 6, 1, 16, 3, 2, 4, 12, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 16, 5, 8, 3, 4, 1, 18, 4, 8, 3, 2, 1, 12, 1, 2, 9, 32, 4, 6, 1, 4, 3, 8, 1, 24, 1, 2, 12, 4, 5, 6, 1, 16, 27, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(12) = 4 permutations:
  {1,1,2,3}
  {2,1,1,3}
  {3,1,1,2}
  {3,2,1,1}
		

Crossrefs

Dominated by A318762.
The non-negated version is A332294.
The complement is counted by A332742.
A less interesting version is A333145.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers with non-unimodal negated prime signature are A332642.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negation is unimodal are A332578.
Partitions with unimodal negated run-lengths are A332638.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[nrmptn[n]],unimodQ[-#]&]],{n,30}]

Formula

a(n) + A332742(n) = A318762(n).

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024
Showing 1-10 of 10 results.