cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344870 Number of distinct prime factors of n^n-1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 6, 6, 5, 4, 8, 5, 5, 7, 7, 4, 8, 3, 11, 9, 8, 6, 12, 11, 8, 9, 11, 9, 14, 4, 12, 8, 13, 10, 18, 9, 8, 10, 15, 7, 16, 6, 14, 17, 8, 5, 18, 17, 13, 14, 17, 7, 15, 10, 18, 8, 10, 5, 26, 7, 9, 14, 19, 14, 17, 9, 15, 11, 19, 7, 29, 12, 7, 11, 19, 12, 21, 8, 22, 25, 6, 6, 26, 16, 9, 15, 21, 8, 26, 11, 15, 13, 11, 11, 25, 8, 12, 14, 26
Offset: 2

Views

Author

Seiichi Manyama, May 31 2021

Keywords

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(n^n-1): n in [2..100]];
  • Mathematica
    a[n_] := PrimeNu[n^n - 1]; Array[a, 45, 2] (* Amiram Eldar, Jun 01 2021 *)
  • PARI
    a(n) = omega(n^n-1);
    

Formula

a(n) = A001221(A048861(n)).

A309941 Number of prime factors of n^n - 1, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 7, 8, 6, 4, 8, 6, 5, 7, 7, 7, 10, 4, 11, 10, 8, 6, 13, 13, 11, 9, 13, 10, 15, 4, 13, 12, 13, 10, 18, 11, 8, 10, 16, 9, 16, 6, 15, 18, 9, 5, 19, 20, 14, 15, 17, 8, 16, 12, 18, 10, 10, 5, 26, 8, 10, 14, 20, 19, 17, 9, 17, 12, 19, 7, 29, 15, 8, 11, 20, 13, 21, 8
Offset: 2

Views

Author

Hugo Pfoertner, Aug 24 2019

Keywords

Examples

			a(3) = 2: 3^3 - 1 = 26 = 2 * 13.
a(5) = 4: 5^5 - 1 = 3124 = 2^2 * 11 * 71.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[n^n - 1]; Array[a, 45, 2] (* Amiram Eldar, Jul 04 2024 *)
  • PARI
    for(k=2, 50, print1(bigomega(k^k-1),", "))

A344859 a(n) is the number of divisors of n^n + 1.

Original entry on oeis.org

2, 2, 2, 6, 2, 8, 8, 16, 8, 16, 8, 96, 16, 32, 48, 160, 4, 12, 288, 48, 8, 64, 16, 512, 64, 128, 32, 3072, 64, 128, 1024, 384, 16, 2048, 64, 18432, 32, 128, 192, 512, 768, 64, 1024, 384, 256, 16384, 256, 2560, 64, 192, 1024, 3072, 32, 512, 16384, 4096, 128, 8192, 8192, 768, 4096, 256, 128, 1376256, 16
Offset: 0

Views

Author

Seiichi Manyama, May 31 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := DivisorSigma[0, n^n + 1]; Array[a, 45, 0] (* Amiram Eldar, May 31 2021 *)
  • PARI
    a(n) = numdiv(n^n+1);

Formula

a(n) = A000005(A014566(n)).

A366819 a(n) is the sum of the divisors of n^n-1.

Original entry on oeis.org

4, 42, 432, 6048, 67584, 1704240, 38054016, 967814400, 16203253248, 513593801496, 15743437516800, 720045832568832, 19146847615988736, 835966563470742528, 31421980989189888768, 1602925310146310674200, 52064744760120508416000, 4286575920597346109768658
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = sigma(n^n-1);

Formula

a(n) = A000203(A048861(n)).

A377676 a(n) is the number of divisors of n^n - n.

Original entry on oeis.org

2, 8, 18, 40, 24, 120, 48, 336, 80, 192, 72, 1920, 48, 288, 23040, 1728, 36, 10240, 72, 7680, 432, 240, 384, 32256, 640, 49152, 2016, 3840, 96, 193536, 1152, 22528, 1152, 4608, 1327104, 1638400, 96, 7680, 9216, 4128768, 384, 294912, 72, 23040, 30720, 576
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n^n - n]; Array[a, 45, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = numdiv(n^n-n);

Formula

a(n) = A000005(A061190(n)).

A366821 a(n) is phi(n^n-1) where phi is the Euler totient function.

Original entry on oeis.org

2, 12, 128, 1400, 30240, 264992, 6635520, 141087744, 5890320000, 114117380608, 4662793175040, 99053063903040, 5470524984113280, 167080949856000000, 9208981628670443520, 413582117375670921216, 29531731481729468006400, 659473218553437863041320
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[phi](n^n-1):
    seq(a(n), n=2..20);  # Alois P. Heinz, Oct 26 2023
  • Mathematica
    Array[EulerPhi[#^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n-1);

Formula

a(n) = A000010(A048861(n)).
Showing 1-6 of 6 results.