cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A309941 Number of prime factors of n^n - 1, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 7, 8, 6, 4, 8, 6, 5, 7, 7, 7, 10, 4, 11, 10, 8, 6, 13, 13, 11, 9, 13, 10, 15, 4, 13, 12, 13, 10, 18, 11, 8, 10, 16, 9, 16, 6, 15, 18, 9, 5, 19, 20, 14, 15, 17, 8, 16, 12, 18, 10, 10, 5, 26, 8, 10, 14, 20, 19, 17, 9, 17, 12, 19, 7, 29, 15, 8, 11, 20, 13, 21, 8
Offset: 2

Views

Author

Hugo Pfoertner, Aug 24 2019

Keywords

Examples

			a(3) = 2: 3^3 - 1 = 26 = 2 * 13.
a(5) = 4: 5^5 - 1 = 3124 = 2^2 * 11 * 71.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[n^n - 1]; Array[a, 45, 2] (* Amiram Eldar, Jul 04 2024 *)
  • PARI
    for(k=2, 50, print1(bigomega(k^k-1),", "))

A372546 Number of distinct prime factors of n^n+n.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 5, 4, 3, 7, 4, 4, 4, 8, 6, 5, 5, 6, 10, 6, 6, 10, 6, 5, 6, 8, 8, 11, 6, 7, 11, 7, 7, 13, 7, 9, 8, 7, 5, 10, 7, 7, 12, 7, 9, 18, 6, 7, 10, 10, 11, 11, 10, 9, 14, 12, 12, 11, 7, 9, 13, 6, 7, 16, 5, 14, 10, 7, 7, 15, 11, 7, 13, 7, 8, 16, 9, 13
Offset: 1

Views

Author

Tyler Busby, May 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[n^n + n]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)
  • PARI
    a(n) = omega(n^n+n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372546(n): return primenu(n*(n**(n-1)+1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A066068(n)).

A344869 Number of distinct prime factors of n^n+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 3, 3, 4, 3, 6, 4, 5, 5, 6, 2, 3, 7, 5, 3, 6, 4, 8, 6, 7, 5, 11, 6, 7, 10, 7, 4, 11, 6, 13, 5, 7, 7, 8, 9, 6, 10, 8, 8, 14, 8, 10, 6, 7, 10, 11, 5, 8, 14, 11, 7, 13, 13, 9, 12, 8, 7, 18, 4, 12, 8, 7, 7, 16, 9, 8, 12, 4, 8, 24, 7, 9, 14, 7, 5, 12, 6, 12, 8, 13, 10, 12, 10, 6, 23, 15, 6, 9, 11, 16, 3, 8, 17, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, May 31 2021

Keywords

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(n^n+1): n in [0..100]];
  • Mathematica
    a[0] = 1; a[n_] := PrimeNu[n^n + 1]; Array[a, 45, 0] (* Amiram Eldar, May 31 2021 *)
  • PARI
    a(n) = omega(n^n+1);
    

Formula

a(n) = A001221(A014566(n)).

Extensions

a(67)-a(79) from Jon E. Schoenfield, May 31 2021
a(80)-a(100) from Seiichi Manyama, May 31 2021

A372599 Number of distinct prime factors of n^n-n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 4, 6, 5, 6, 5, 9, 5, 6, 12, 8, 4, 10, 5, 11, 7, 6, 7, 12, 8, 13, 8, 10, 6, 14, 8, 12, 9, 10, 18, 18, 6, 11, 11, 19, 8, 16, 5, 12, 13, 7, 7, 20, 5, 18, 12, 14, 7, 21, 12, 19, 10, 10, 7, 24, 7, 10, 20, 15, 13, 19, 6, 19, 11, 19, 9, 25, 6, 13
Offset: 2

Views

Author

Tyler Busby, May 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = PrimeNu[n^n - n];
    Table[a[n], {n, 2, 75}] (* Robert P. P. McKone, May 07 2024 *)
  • PARI
    a(n) = omega(n^n-n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372599(n): return primenu(n*(n**(n-1)-1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A061190(n)).

A366819 a(n) is the sum of the divisors of n^n-1.

Original entry on oeis.org

4, 42, 432, 6048, 67584, 1704240, 38054016, 967814400, 16203253248, 513593801496, 15743437516800, 720045832568832, 19146847615988736, 835966563470742528, 31421980989189888768, 1602925310146310674200, 52064744760120508416000, 4286575920597346109768658
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = sigma(n^n-1);

Formula

a(n) = A000203(A048861(n)).

A366821 a(n) is phi(n^n-1) where phi is the Euler totient function.

Original entry on oeis.org

2, 12, 128, 1400, 30240, 264992, 6635520, 141087744, 5890320000, 114117380608, 4662793175040, 99053063903040, 5470524984113280, 167080949856000000, 9208981628670443520, 413582117375670921216, 29531731481729468006400, 659473218553437863041320
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[phi](n^n-1):
    seq(a(n), n=2..20);  # Alois P. Heinz, Oct 26 2023
  • Mathematica
    Array[EulerPhi[#^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n-1);

Formula

a(n) = A000010(A048861(n)).

A088807 Number of distinct prime factors of p^p - 1 where p = prime(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 4, 3, 6, 9, 4, 9, 7, 6, 5, 7, 5, 7, 9, 7, 12, 8, 6, 8, 8, 11, 8, 6, 7, 10, 9, 7, 13
Offset: 1

Views

Author

Cino Hilliard, Nov 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu/@Table[p^p-1,{p,Prime[Range[30]]}] (* The program takes a long time to run. *) (* Harvey P. Dale, Sep 05 2020 *)
  • PARI
    omegaptop(n,m) = { sr=0; forprime(x=2,n, y=omega(x^x-m); print1(y","); sr += 1.0/y; ); print(); }
    
  • Python
    from sympy import factorint, prime
    def a(n): p = prime(n); return len(factorint(p**p-1).values())
    print([a(n) for n in range(1, 12)]) # Michael S. Branicky, May 27 2022

Formula

a(n) = A344870(A000040(n)). - Amiram Eldar, Jul 04 2024

Extensions

More terms from Ray Chandler, Feb 21 2004
Name clarified, offset and data corrected and a(27)-a(33) added by Amiram Eldar, Jul 04 2024
Showing 1-7 of 7 results.