cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A357867 Numbers k such that A334499(k) is not divisible by k.

Original entry on oeis.org

12, 15, 25, 28, 30, 39
Offset: 1

Views

Author

Pontus von Brömssen, Oct 17 2022

Keywords

Crossrefs

A180001 Eventual period of a single cell in rule 110 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 9, 351, 91, 295, 32, 7, 27, 285, 30, 630, 44, 1058, 36, 250, 7, 405, 1652, 1044, 60, 7, 64, 495, 51, 1050, 72, 4403, 76, 390, 60, 7, 630, 1548, 88, 7, 7, 705, 96, 1470, 100, 765, 195, 8109, 7, 825, 7, 2052, 116, 7, 19560, 915
Offset: 1

Views

Author

Ben Branman, Jan 13 2011

Keywords

Comments

The first 21 terms match the most frequent possible outcome (see comment in A332717) with the exception of a(14) which is the second-most frequent. - Hans Havermann, Jun 11 2020

Examples

			For n=4, the evolution of a single cell is:
0001
0011
0111 <--= period starts
1101
0111 <--= again start of period
etc, so a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := -Subtract @@
       Flatten[Map[Position[#, #[[-1]]] &,
         NestWhileList[CellularAutomaton[110],
          Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]]
  • Sage
    def A180001(n):
        def bit(x,i): return (x >> i) & 1
        rulemap = dict((tuple(bit(i,k) for k in reversed(range(3))), bit(110,i)) for i in range(8))
        def neighbours(d, i): return tuple(d[k % n] for k in [i-1..i+1])
        v = [0]*n; v[-1] = 1;
        history = [v]
        while True:
            v2 = [rulemap[neighbours(history[-1], i)] for i in range(n)]
            if v2 in history: return len(history)-history.index(v2)
            history.append(v2) # D. S. McNeil, Jan 15 2011

Extensions

More terms from Alois P. Heinz, Jan 14 2011

A334496 Eventual period of a single cell in rule 30 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 1, 4, 40, 72, 15, 154, 102, 260, 1428, 1455, 6016, 10846, 2844, 247, 3420, 597, 3256, 38249, 185040, 588425, 312156, 240300, 249165, 833808, 374265, 2841150, 842528, 1049268, 5656002, 18480630, 2844, 49276415, 9329228, 961272, 19211080, 51151354, 109603410
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Programs

  • Mathematica
    a[rule_, n_] := -Subtract @@ Flatten[Map[     Position[#, #[[-1]]] &,
         NestWhileList[CellularAutomaton[rule],
          Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]]
    a[30, #] & /@ Range[10]
    (* Bradley Klee, Apr 26 2020 *)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334515 Eventual period of a single cell in rule 75 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 3, 2, 30, 18, 126, 2, 504, 430, 979, 18, 443, 2198, 6820, 976, 78812, 7812, 158080, 142580, 248493, 122870, 1630792, 18, 2777040, 4511, 81688176, 868, 463347935, 5921860, 1211061438, 26636800, 598772163, 40012662, 145710075, 135322524, 40583131393, 535150200, 132932362849, 3936823600
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(14) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 09 2020

A085587 Eventual period of a single cell in rule 90 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 7, 1, 7, 6, 31, 4, 63, 14, 15, 1, 15, 14, 511, 12, 63, 62, 2047, 8, 1023, 126, 511, 28, 16383, 30, 31, 1, 31, 30, 4095, 28, 87381, 1022, 4095, 24, 1023, 126, 127, 124, 4095, 4094, 8388607, 16, 2097151, 2046, 255, 252, 67108863, 1022, 1048575, 56, 511, 32766, 536870911, 60
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Jun 10 2018
Definition edited by N. J. A. Sloane, May 05 2020

A334506 Eventual period of a single cell in rule 161 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 6, 6, 4, 4, 14, 14, 1, 1, 14, 14, 12, 12, 62, 62, 8, 8, 126, 126, 28, 28, 30, 30, 1, 1, 30, 30, 28, 28, 1022, 1022, 24, 24, 126, 126, 124, 124, 4094, 4094, 16, 16, 2046, 2046, 252, 252, 1022, 1022, 56, 56, 32766, 32766, 60, 60, 62, 62, 1, 1, 62, 62, 60, 60, 8190
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(40) from Jinyuan Wang, May 09 2020
a(41)-a(50) from Vaclav Kotesovec, May 10 2020
a(51) and beyond from Angelo Rosso, Jul 26 2022

A334508 Eventual period of a single cell in rule 45 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 1, 2, 30, 18, 126, 2, 504, 430, 979, 18, 676, 2198, 2340, 976, 78812, 3756, 183920, 142580, 352884, 122870, 1358104, 56544, 2777040, 4511, 44568603, 304913, 463347935, 5921860, 855372646, 26636800, 3315517623, 2359940, 24752893585, 135322524, 8049125817, 535150200, 132932362849
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(16) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 11 2020

A334497 Maximum value of eventual period for any starting configuration for a rule 30 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 1, 63, 40, 171, 15, 154, 102, 832, 1428, 1455, 6016, 10846, 2844, 3705, 6150, 2793, 3553, 38249, 185040, 588425, 312156, 240300, 249165, 1466066, 374265, 2841150, 2002272, 2038476, 5656002, 18480630, 2237472
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(7).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.

Crossrefs

Programs

  • Mathematica
    a[rule_, init_] := -Subtract @@ Flatten[Map[
         Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[rule],
          init, Unequal, All], {0}]]
    tri[n_] := a[30, #] & /@ Tuples[{0, 1}, n];
    tri /@ Range[7]
    Max /@ %
    (* Bradley Klee, Apr 26 2020 *)

Formula

a(n) <= A357950(n). Equality holds for n = 4, 8, 16. - Pontus von Brömssen, Oct 22 2022

Extensions

a(8)-a(12) from Jinyuan Wang, May 14 2020
a(13)-a(22) from Pontus von Brömssen, Oct 22 2022
a(23)-a(36) from Paolo Xausa, Jun 29 2023, using data from Gage, Laub and McGarry (2005), p. 7, Table 2.

A334500 For 0 <= R <= 255, let s(R,n) = eventual period of a single cell in a Rule R cellular automaton operating in a cyclic universe of width n; a(n) is the nearest integer to max_R s(R,n)/n (rounded down in case of ties).

Original entry on oeis.org

2, 1, 2, 2, 6, 3, 18, 5, 56, 43, 89, 8, 63, 157, 455, 376, 4636, 434, 9680, 7129, 16804, 5585, 70904, 7710, 111082, 12006, 3025488, 10890, 15977515, 197395, 39066498, 832400, 100470231, 1176843, 707225531, 3758959, 1096841389, 14082900, 3408522124, 98420590
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Nearest integer to A334499(n)/n.

Examples

			For R = 45, the sequence {s(R,1)..s(R,10)} is 2,2,1,2,30,18,126,2,504,430 (see A334508), and s(45,10) = 430 is the greatest value of any s(R,10), so a(10) = 430/10 = 430.
		

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(40) (based on data in A334499) from Pontus von Brömssen, Oct 15 2022

A334504 Eventual period of a single cell in rule 26 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 6, 1, 20, 2, 28, 1, 72, 6, 88, 4, 104, 14, 120, 1, 272, 14, 304, 12, 336, 62, 368, 8, 400, 126, 432, 28, 464, 30, 496, 1, 1056, 30, 1120, 28, 1184, 1022, 1248, 24, 1312, 126, 1376, 124, 1440, 4094, 1504, 16, 1568, 2046, 1632, 252, 1696, 1022, 1760
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

It seems that a(2*n+2) = A268754(n) and a(2*n+1) = (2*n+1) * 2^A070939(n) = A363121(n+1)/2 for n > 0. - Andrey Zabolotskiy, Sep 04 2024

Extensions

a(11)-a(40) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 09 2020
Showing 1-10 of 21 results. Next