cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000226 Number of n-node unlabeled connected graphs with one cycle of length 3.

Original entry on oeis.org

1, 1, 3, 7, 18, 44, 117, 299, 793, 2095, 5607, 15047, 40708, 110499, 301541, 825784, 2270211, 6260800, 17319689, 48042494, 133606943, 372430476, 1040426154, 2912415527, 8167992598, 22947778342, 64577555147, 182009003773, 513729375064, 1452007713130
Offset: 3

Views

Author

Keywords

Comments

Number of rooted trees on n+1 nodes where root has degree 3. - Christian G. Bower
Third column of A033185. - Michael Somos, Aug 20 2018
From Washington Bomfim, Dec 22 2020: (Start)
Number of forests of 3 rooted trees with a total of n nodes.
Number of unicyclic graphs with a cycle of length 3 and a total of n nodes.
(End)

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A033185 and A217781.
For n >= 3 a(n) = A217781(n, 3) = A058879(n, n-2) = A033185(n, 3).

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series((B(n-2)(x)^3+ 3*B(n-2)(x)* B(n-2)(x^2)+ 2*B(n-2)(x^3))/6, x=0, n+1), x,n): seq(a(n), n=3..40); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    terms = 30; r[] = 0; Do[r[x] = x *Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms+3}]; A[x_] = (r[x]^3 + 3*r[x]*r[x^2] + 2*r[x^3])/6 + O[x]^(terms+3); Drop[CoefficientList[A[x], x], 3] (* Jean-François Alcover, Nov 23 2011, updated Jan 11 2018 *)
  • PARI
    seq(max_n) = {my(a = f = vector(max_n), s, D); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=3,max_n,s=0;forpart(P=n,D=Set(P);if(#D==3,s+=f[P[1]]*f[P[2]]*f[P[3]];next());
    if(#D==1, s+= binomial(f[P[1]]+2, 3); next());
    if(P[1] == P[2], s += binomial(f[P[1]]+1, 2) * f[P[3]],
    s += binomial(f[P[2]]+1, 2) * f[P[1]]),[1,n],[3,3]); a[n] = s ); a[3..max_n] }; \\ Washington Bomfim, Dec 22 2020

Formula

G.f.: (r(x)^3+3*r(x)*r(x^2)+2*r(x^3))/6 where r(x) is g.f. for rooted trees (A000081).
a(n) = Sum_{j1+2j2+···= n} (Product_{i=1..n} binomial(A000081(i) + j_i -1, j_i)) [(4.27) of [F. Ruskey] with n replaced by n+1]. - Washington Bomfim, Dec 22 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 19 2000

A000368 Number of connected graphs with one cycle of length 4.

Original entry on oeis.org

1, 1, 4, 9, 28, 71, 202, 542, 1507, 4114, 11381, 31349, 86845, 240567, 668553, 1860361, 5188767, 14495502, 40572216, 113743293, 319405695, 898288484, 2530058013, 7135848125, 20152898513, 56986883801
Offset: 4

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 69.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A217781.
Second diagonal of A058879.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[4], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {5, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; max = 30; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2 k), {k, 1, max}]; g81x4 = Sum[A000081[[k]]*x^(4 k), {k, 1, max}]; Drop[CoefficientList[ Series[(2*g81x4 + 3*g81x2^2 + 2*g81^2*g81x2 + g81^4)/8, {x, 0, max}], x], 4] (* Vaclav Kotesovec, Dec 25 2020 *)
  • PARI
    g(Q)={my(V=Vec(Q),D=Set(V),d=#D); if(d==4,return(3*f[D[1]]*f[D[2]]*f[D[3]]*f[D[4]]));
    if(d==1, return((f[D[1]]^4+2*f[D[1]]^3+3*f[D[1]]^2+2*f[D[1]])/8));
    my(k=1, m = #select(x->x == D[k],V), t); while(m==1, k++; m = #select(x->x == D[k], V)); t = D[1]; D[1] = D[k]; D[k] = t;
    if(d == 3, return( f[D[1]] * f[D[2]] * f[D[3]] * (3 * f[D[1]] + 1)/2 ) );
    if(m==3, return(f[D[1]]^2 * f[D[2]] * (f[D[1]] + 1)/2));
    ((3*f[D[2]]^2 + f[D[2]])*f[D[1]]^2 + (f[D[2]]^2 + 3*f[D[2]])*f[D[1]])/4 };
    seq(max_n) = { my(s, a = vector(max_n), U); f = vector(max_n); f[1] = 1;
    for(j=1, max_n - 1, if(j%100==0,print(j)); f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=4, max_n, s=0; forpart(Q = n, if( (Q[4] > Q[3]) && (Q[3]-1 > Q[2]),
          U = U / (f[Q[4] + 1] * f[Q[3] - 1]) * f[Q[4]] * f[Q[3]],  U = g(Q)); s += U,
    [1,n],[4,4]); a[n] = s; if(n % 100 == 0, print(n": " s))); a[4..max_n] };
    \\ Washington Bomfim, Jul 19 2012 and Dec 22 2020

Formula

From Washington Bomfim, Jul 19 2012 and Dec 22 2020: (Start)
a(n) = Sum_{P}( g(Q) ), where P is the set of the partitions Q of n with 4 parts, Q with distinct parts D[1]..D[d], D[1] the part of maximum multiplicity m in Q, f(n) = A000081(n), and g(Q) given by,
| 3 * f(D[1]) * f(D[2]) * f(D[3]) * f(D[4]), if d = 4,
| (f(D[1])^4 + 2*f(D[1])^3 + 3*f(D[1])^2 + 2*f(D[1]))/8, if d = 1,
g(Q) = | f(D[1]) * f(D[2]) * f(D[3]) * (3 * f(D[1]) + 1)/2, if d = 3,
| ((3*f(D[2])^2+f(D[2]))*f(D[1])^2+(f(D[2])^2+3*f(D[2]))*f(D[1]))/4,
| if d=2, and m=2,
| f(D[1])^2 * f(D[2]) * (f(D[1]) + 1)/2, if d=2, and m=3.
(End)
G.f.: (2*t(x^4) + 3*t(x^2)^2 + 2*t(x)^2*t(x^2) + t(x)^4)/8 where t(x) is the g.f. of A000081. - Andrew Howroyd, Dec 03 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 20 2000
Definition improved by Franklin T. Adams-Watters, May 16 2006
More terms from Sean A. Irvine, Nov 14 2010

A339984 G.f.: g(x) * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 13, 26, 65, 147, 369, 899, 2298, 5851, 15261, 39945, 105948, 282504, 759480, 2052027, 5576017, 15216998, 41705762, 114715503, 316611401, 876466003, 2433091773, 6771462322, 18889829555, 52809592990, 147935027381, 415182991401, 1167251435240
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ A339986 * A051491^n / n^(3/2).

A339985 G.f.: g(x)^2 * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 14, 37, 90, 232, 584, 1512, 3906, 10246, 26984, 71766, 191852, 516400, 1396760, 3797435, 10367628, 28420466, 78183462, 215791426, 597368222, 1658233794, 4614679792, 12872125836, 35982713314, 100787606966, 282832173830, 795070060983
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81^2 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ 2 * A339986 * A051491^n / n^(3/2).
Showing 1-4 of 4 results.