cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A019952 Decimal expansion of tangent of 54 degrees.

Original entry on oeis.org

1, 3, 7, 6, 3, 8, 1, 9, 2, 0, 4, 7, 1, 1, 7, 3, 5, 3, 8, 2, 0, 7, 2, 0, 9, 5, 8, 1, 9, 1, 0, 8, 8, 7, 6, 7, 9, 5, 2, 5, 8, 9, 9, 3, 3, 6, 0, 0, 8, 1, 5, 8, 6, 6, 3, 3, 6, 5, 6, 7, 5, 7, 6, 5, 6, 1, 9, 0, 9, 5, 1, 9, 3, 7, 6, 7, 1, 7, 2, 9, 8, 5, 0, 6, 5, 9, 5, 2, 9, 9, 3, 1, 1, 0, 0, 7, 0, 1, 9
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 36 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic number with denominator 5. - Charles R Greathouse IV, Aug 27 2017
Conjecture: Product (2/3) * (8/7) * (12/13) * (18/17) * (22/23) * (32/33) * ... * (a_n/b_n) = sqrt(25 + 10*sqrt(5))/5 = tan(3*Pi/10) = A019952, where a_n even, a_n + b_n = a(n), |a_n - b_n| = 1, n >= 0. - Dimitris Valianatos, Feb 14 2020
Also the limiting value of the distance between the lines F(n)*x + F(n+1)*y = 0 and F(n)*x + F(n+1)*y = F(n+2) (where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Apr 03 2021
Decimal expansion of the radius of an inscribed sphere in a rhombic triacontahedron with unit edge length. - Wesley Ivan Hurt, May 11 2021

Examples

			1.376381920471173538207209581910887679525899336...
		

Crossrefs

Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).
Cf. A344212 (rhombic triacontahedron midradius).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(3*Pi(R)/10); // G. C. Greubel, Nov 22 2018
    
  • Maple
    Digits:=100: evalf(tan(3*Pi/10)); # Wesley Ivan Hurt, Oct 07 2014
  • Mathematica
    RealDigits[Tan[3*Pi/10], 10, 100][[1]] (* Wesley Ivan Hurt, Oct 07 2014 *)
    RealDigits[Tan[54 Degree],10,120][[1]] (* Harvey P. Dale, Jul 16 2016 *)
  • PARI
    tan(3*Pi/10) \\ Charles R Greathouse IV, Aug 27 2017
    
  • Python
    from sympy import sqrt
    [print(i, end=', ') for i in str(sqrt(1+2/sqrt(5)).n(110)) if i!='.'] # Karl V. Keller, Jr., Jun 19 2020
  • Sage
    numerical_approx(tan(3*pi/10), digits=100) # G. C. Greubel, Nov 22 2018
    

Formula

Equals A019863/A019845 = 1/A019934. - R. J. Mathar, Jul 26 2010
The largest positive solution of cos(4*arctan(1/x)) = cos(6*arctan(1/x)). - Thomas Olson, Oct 03 2014
Equals sqrt(25 + 10*sqrt(5))/5. - G. C. Greubel, Nov 22 2018
Equals sqrt(2 + sqrt(5))/5^(1/4). - Burak Muslu, Apr 03 2021
From Wesley Ivan Hurt, May 11 2021: (Start)
Equals phi^2/sqrt(1+phi^2) where phi is the golden ratio.
Equals sqrt(1+2/sqrt(5)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090772(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A375067. - Hugo Pfoertner, Nov 23 2024

A344212 Decimal expansion of 1 + 1/sqrt(5).

Original entry on oeis.org

1, 4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 11 2021

Keywords

Comments

Decimal expansion of the midradius of a rhombic triacontahedron with unit edge length.
Essentially the same sequence of digits as A176453, A134974, A020762 and A010476. - R. J. Mathar, May 16 2021

Examples

			1.447213595499957939281834733746255247088123671922305...
		

Crossrefs

Cf. A019952 (rhombic triacontahedron inscribed sphere radius).
Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).

Programs

Formula

From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A242671 = 1/A187798.
Equals Product_{k>=0} (1 + 1/A081005(k)). (End)

A344171 Decimal expansion of 12*sqrt(5).

Original entry on oeis.org

2, 6, 8, 3, 2, 8, 1, 5, 7, 2, 9, 9, 9, 7, 4, 7, 6, 3, 5, 6, 9, 1, 0, 0, 8, 4, 0, 2, 4, 7, 7, 5, 3, 1, 4, 8, 2, 5, 2, 8, 7, 4, 2, 0, 3, 1, 5, 3, 3, 8, 3, 0, 8, 6, 9, 1, 2, 5, 0, 7, 6, 6, 9, 4, 4, 9, 2, 6, 2, 5, 1, 1, 0, 7, 6, 5, 3, 6, 5, 8, 7, 9, 2, 9, 7, 2, 9, 7, 2, 9, 0, 0, 5
Offset: 2

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the surface area of a rhombic triacontahedron with unit edge length.

Examples

			26.83281572999747635691008...
		

Crossrefs

Cf. A344172 (rhombic triacontahedron volume).
Cf. A344212 (rhombic triacontahedron midradius).
Cf. A019952 (rhombic triacontahedron radius of inscribed sphere).

Programs

  • Mathematica
    RealDigits[12 Sqrt[5], 10, 100][[1]] // Flatten

A382008 Decimal expansion of the isoperimetric quotient of a rhombic triacontahedron.

Original entry on oeis.org

8, 8, 7, 2, 0, 0, 0, 0, 2, 5, 4, 8, 0, 2, 0, 8, 5, 8, 0, 0, 5, 4, 4, 4, 0, 9, 3, 9, 8, 4, 2, 6, 0, 0, 3, 7, 8, 5, 7, 3, 8, 9, 8, 6, 5, 7, 2, 1, 1, 6, 0, 9, 3, 7, 4, 6, 2, 6, 4, 0, 6, 8, 0, 7, 2, 0, 5, 1, 8, 3, 1, 2, 8, 7, 9, 4, 4, 0, 4, 1, 3, 4, 9, 0, 6, 8, 0, 8, 0, 4
Offset: 0

Views

Author

Paolo Xausa, Mar 20 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.88720000254802085800544409398426003785738986572116...
		

Crossrefs

Cf. A344171 (surface area), A344172 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi*(2 + Sqrt[5])/15, 10, 100]]

Formula

Equals 36*Pi*A344172^2/(A344171^3).
Equals Pi*(2 + sqrt(5))/15 = A000796*A098317/15.

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.
Showing 1-5 of 5 results.